Yasunobu Nakamura( trung thôn thái tinNakamura Yasunobu) is a Japanesephysicist.He is a professor at theUniversity of Tokyo'sResearch Center for Advanced Science and Technology (RCAST)[6]and the Principal Investigator of the Superconducting Quantum Electronics Research Group (SQERG) at the Center for Emergent Matter Science (CEMS) withinRIKEN.[7]He has contributed primarily to the area ofquantum information science,[8]particularly insuperconducting quantum computingand hybrid quantum systems.[9][10][11]

Yasunobu Nakamura
Yasunobu Nakamura
Born1968
Known forWork with "hybrid quantum information systems".[1][2] First demonstration of coherent control of aCooper pairbox-basedsuperconductingcharge qubit.[3][4]
AwardsMicius Quantum Prize2021
Scientific career
FieldsQuantum information science,Superconducting quantum computing

Education and early work

edit

While a child, Nakamura's family moved fromOsakatoHinode, Tokyo,where he would gain his early education.[12]He obtained hisBachelor of Science(1990),Master of Science(1992), andPh.D.(2011) degrees at theUniversity of Tokyo.In 1999, as a researcher atNEC,Nakamura and collaborators Yuri Pashkin andJaw-Shen Tsaidemonstrated "electrical coherent control of a qubit in a solid-state electronic device"[3]and in 2001 "realized the first measurement of the Rabi oscillations associated with the transition between twoJosephsonlevels in theCooper pair box"[13][14]in a configuration developed byMichel Devoretand colleagues in 1998.[13][15]

In 2000, Nakamura was featured as a "Younger Scientist" by theJapan Society of Applied Physicsfor his work atNECin "quantum-state control of nanoscale superconducting devices."[16]From 2001-2002, he visited the group ofHans Mooij[de]atTU Delfton a sabbatical from NEC, where he worked with Irinel Chiorescu, Kees Harmans, and Mooij to create the firstflux qubit.[17][18][19]In 2003, he was named one ofMIT Technology Review's top innovators under 35 years old, in which editors noted that "Nakamura and a collaborator got twoqubitsto interact in a manner that had been predicted but never demonstrated "at the time.[20]

Current work

edit

As of 3 October 2016,the Japan Science and Technology Agency ( khoa học kỹ thuật chấn hưng cơ cấu ) announced funding for Nakamura's work through their Exploratory Research for Advanced Technology (ERATO) program.[21]The project, entitled Macroscopic Quantum Machines,[22]seeks to dramatically improve quantum state control technology to further the field ofquantum computing.Of principal focus is the development of a highly scalable platform for implementing quantum information processing techniques, as well as the creation of hybrid quantum systems which interface with microwavequantum optics.In an article inNikkei Science[ja]in 2018, it was announced that work towards the construction of a quantum computer with 100superconducting qubitswas underway.[23]In 2019, the JapaneseMinistry of Education, Culture, Sports, Science and Technologylaunched a quantum technology project known as QLEAP, with Nakamura as the team leader for the quantum information processing component.[24]The project aims to develop superconducting quantum computers and other quantum technologies over a ten-year period, by increasing collaboration between academia and industry.

Aflux qubitandsuperconductingmicrowave cavityform acoupledsystem that connects to aparametric phase-locked oscillator.In the paper"Single microwave-photon detector using an artificial Λ-type three-level system"published inNature Communicationsin 2016, Nakamura and collaborators manipulated this three-level system in such a way that single photons were detected with an "efficiency of 0.66±0.06 with a lowdark-countprobability of 0.014±0.001 and a reset time of ~400 ns. "[25]

In past years, Nakamura and collaborators have published their findings on the efficient detection of singlemicrowavefrequencyphotons,[25]the suppression ofquasiparticlesin superconducting quantum computing environments for the improvement of qubitcoherencetimes,[26]the development of "a deterministic scheme to generate maximalentanglementbetween remote superconducting atoms, using a propagating microwave photon as a flying qubit ",[27]and the realization of a hybrid quantum system by the strong,coherentcouplingbetween a collective magneticmodeof aferromagneticsphere and a superconducting qubit.[1]

More recently, results have been published in which superconducting qubits were used to resolve quanta ofmagnonnumber states,[28][29]to create a quantitatively non-classical photon number distribution,[30]to measure fluctuations in asurface acoustic wave(SAW) resonator,[31]and to measure an itinerant microwave photon in aquantum nondemolition(QND) detection experiment.[32][33]A superconducting circuit was later used to realize information-to-work conversion by aMaxwell's demon,[34]radio wavesand optical light wereoptomechanicallycoupled to surface acoustic waves,[35]and an orderedvortexlattice in aJosephson junctionarray was observed.[36]

Nakamura has spoken several times at quantum information science conferences and seminars, including at theUniversity of Vienna,[37]the Institute for Theoretical Atomic Molecular and Optical Physics atHarvard University,[38][39]the National Center of Competence in Research's Quantum Science and TechnologyMonte Veritàconference,[40]theInstitute for Quantum Computingat theUniversity of Waterloo,[41]theInstitute for Molecular Engineeringat theUniversity of Chicago[42]theInstitute for Quantum Optics and Quantum Information(IQOQI),[43]and the Yale Quantum Institute atYale University.[44]

In 2020, Nakamura was named as a fellow of theAmerican Physical Societyfor "the first demonstration of coherent time-dependent manipulation of superconducting qubits, and for contributions to the development of superconducting quantum circuits, microwave quantum optics, and hybrid quantum systems".[45]

Honors and awards

edit

References

edit
  1. ^abY. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, "Coherent coupling between a ferromagnetic magnon and a superconducting qubit",Science349,405-408 (2015),doi:10.1126/science.aaa3693
  2. ^Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, "Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit",Physical Review Letters113,083603 (2014),doi:10.1103/PhysRevLett.113.083603,arxiv:1405.1913
  3. ^abY. Nakamura, Yu. A. Pashkin andJ.- S. Tsai,"Coherent control of macroscopic quantum states in a single-Cooper-pair box",Nature398,786-788 (1999),doi:10.1038/19718,arXiv:9904003
  4. ^T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J.- S. Tsai, "Demonstration of conditional gate operation using superconducting charge qubits",Nature425,941-944 (2003),doi:10.1038/nature02015,arxiv:0311067
  5. ^"RIKEN Tuning Into Quantum Computers".2007-08-17.Retrieved2017-06-19.
  6. ^"Research Groups".Retrieved2016-12-21.
  7. ^"Superconducting Quantum Electronics Research Group".Retrieved2020-10-22.
  8. ^T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. O'Brien, "Quantum computers",Nature464,45-53 (2010),doi:10.1038/nature08812,arxiv:1009:2267
  9. ^"マイナビニュース".2015-07-10.Retrieved2016-12-22.
  10. ^"ようこそ lượng tử Interview".2016-11-15.Retrieved2016-12-22.
  11. ^"Science Daily 2015".2015-08-03.Retrieved2016-12-22.
  12. ^"UTokyo Voices 066".2019-06-20.Retrieved2019-06-21.
  13. ^ab"Bell Prize 2013".Archived fromthe originalon 2014-06-04.Retrieved2016-12-21.
  14. ^Y. Nakamura, Y.A. Pashkin, and J.S. Tsai, "Rabi Oscillations in a Josephson-Junction Charge Two-Level System",Physical Review Letters87,246601 (2001),doi:10.1103/PhysRevLett.87.246601
  15. ^V. Bouchiat, D. Vion, P. Joyez, D. Esteve and M. H. Devoret, "Quantum coherence with a single Cooper pair",Physica ScriptaT76,165-170 (1998),doi:10.1238/Physica.Topical.076a00165
  16. ^"JSAP Younger Scientists"(PDF).Retrieved2016-12-21.
  17. ^I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, "Coherent Quantum Dynamics of a Superconducting Flux Qubit",Science299,5614, 1869-1871, (2003),doi:10.1126/science.1081045,arxiv:0305461
  18. ^J. Clarke, "Flux Qubit Completes the Hat Trick",Science299,5614, 1850-1851, (2003), doi:10.1126/science.1083001
  19. ^"The first Delft qubit".2017-11-04.Retrieved2017-11-04.
  20. ^ab"Innovators Under 35".Retrieved2016-12-21.
  21. ^"Chiến lược sáng tạo nghiên cứu đẩy mạnh sự nghiệp における".Retrieved2016-12-21.
  22. ^"Nghiên cứu tổng quát および nghiên cứu lĩnh vực".Retrieved2016-12-21.
  23. ^"Siêu dẫn điện lượng tử ビットを sáng lập 100ビットを mục chỉ す".September 2018.Retrieved2019-06-21.
  24. ^"Quang ・ lượng tử bay vọt フラッグシッププログラム ( Q-LEAP )".Retrieved2019-04-03.
  25. ^abK. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.- S. Tsai, T. Yamamoto, and Y. Nakamura, "Single microwave-photon detector using an artificial Λ-type three-level system",Nature Communications7,12303 (2016),doi:10.1038/ncomms12303
  26. ^S. Gustavsson, F. Yan, G. Catelani, J. Bylander, A. Kamal, J. Birenbaum, D. Hover, D. Rosenberg, G. Samach, A. P. Sears, S. J. Weber, J. L. Yoder, J. Clarke, A. J. Kerman, F. Yoshihara, Y. Nakamura, T. P. Orlando, and W. D. Oliver, "Suppressing relaxation in superconducting qubits by quasiparticle pumping",Science354,6319, 1573-1577 (2016),doi:10.1126/science.aah5844
  27. ^K. Koshino, K. Inomata, Z. R. Lin, Y. Tokunaga, T. Yamamoto, and Y. Nakamura, "Theory of Deterministic Entanglement Generation between Remote Superconducting Atoms",Physical Review Applied7,064006 (2017),doi:10.1103/PhysRevApplied.7.064006
  28. ^D. Lachance-Quiriom, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, and Y. Nakamura, "Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet",Science Advances3,7,e1603150 (2017),doi:10.1126/sciadv.1603150
  29. ^"Quantifying quanta".2017-11-22.Retrieved2019-04-03.
  30. ^S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, "Nonclassical Photon Number Distribution in a Superconducting Cavity under a Squeezed Drive",Physical Review Letters119,023602 (2017),doi:10.1103/PhysRevLett.119.023602
  31. ^A. Noguchi, R. Yamazaki, Y. Tabuchi, and Y. Nakamura, "Qubit-Assisted Transduction for a Detection of Surface Acoustic Waves near the Quantum Limit",Physical Review Letters119,180505 (2017),doi:10.1103/PhysRevLett.119.180505
  32. ^S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura, "Quantum non-demolition detection of an itinerant microwave photon",Nature Physics14,546-549 (2018),doi:10.1038/s41567-018-0066-3
  33. ^"Viewpoint: Single Microwave Photons Spotted on the Rebound".2018-04-23.Retrieved2019-04-03.
  34. ^Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura, "Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system",Nature Communications9,1291 (2018),doi:10.1038/s41467-018-03686-y
  35. ^A. Okada, F. Oguro, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, and Y. Nakamura, "Cavity Enhancement of Anti-Stokes Scattering via Optomechanical Coupling with Surface Acoustic Waves",Physical Review Applied10,024002 (2018),doi:10.1103/PhysRevApplied.10.024002
  36. ^R. Cosmic, K. Ikegami, Z. Lin, K. Inomata, J. M. Taylor, and Y. Nakamura, "Circuit-QED-based measurement of vortex lattice order in a Josephson junction array",Physical Review B98,060501(R) (2018),doi:10.1103/PhysRevB.98.060501
  37. ^"University of Vienna 2014".Retrieved2016-12-21.
  38. ^"ITAMP".Retrieved2016-12-21.
  39. ^"ITAMP Video".YouTube.2015-07-15.Retrieved2016-12-22.
  40. ^"NCCR QSIT".Retrieved2016-12-21.
  41. ^"IQC 2016".Retrieved2016-12-21.
  42. ^"IME Distinguished Colloquium Series".Retrieved2019-04-03.
  43. ^"IQOQI Colloquium".Retrieved2019-04-03.
  44. ^"YQI Colloquium".Retrieved2019-04-03.
  45. ^ab"APS Fellows".Retrieved2020-12-01.
  46. ^"JSAP Younger Scientists"(PDF).Retrieved2017-01-24.
  47. ^"Prize Winners".Millennium Science Forum.Retrieved2019-04-03.
  48. ^"2016 Sir Martin Wood Prize for Japan".Oxford Instruments.Retrieved2017-01-24.
  49. ^"NEC Awards FY1999".Retrieved2017-01-24.
  50. ^"Agilent Technologies Prize".2004-06-17.Retrieved2016-12-21.
  51. ^"Simon Memorial Prize: Past Winners".Retrieved2017-06-13.
  52. ^"RCAST News".2014.Retrieved2017-01-24.
  53. ^"JSAP Outstanding Achievement Award Recipients".Retrieved2019-06-21.
  54. ^"Đệ 19 hồi ứng dùng vật lý học sẽ công trạng thưởng".Retrieved2019-06-21.