Horndeski's theory
Horndeski's theoryis the most general theory of gravity in four dimensions whose Lagrangian is constructed out of themetric tensorand ascalar fieldand leads tosecond order equationsof motion.[clarification needed]The theory was first proposed byGregory Horndeskiin 1974[1]and has found numerous applications, particularly in the construction ofcosmological modelsofInflationanddark energy.[2]Horndeski's theory contains many theories of gravity, includingGeneral relativity,Brans-Dicke theory,Quintessence,Dilaton,Chameleonand covariant Galileon[3]as special cases.
Action
[edit]Horndeski's theory can be written in terms of anactionas[4]
with theLagrangian densities
HereisNewton's constant,represents the matter Lagrangian,toare generic functions ofand,are theRicci scalarandEinstein tensor,is theJordan framemetric, semicolon indicatescovariant derivatives,commas indicatepartial derivatives,,and repeated indices are summed over followingEinstein's convention.
Constraints on parameters
[edit]Many of the free parameters of the theory have been constrained,from the coupling of the scalar field to the top field andvia coupling to jets down to low coupling values with proton collisions at theATLAS experiment.[5]and,are strongly constrained by the direct measurement of the speed of gravitational waves followingGW170817.[6][7][8][9][10][11]
See also
[edit]- Classical theories of gravitation
- General relativity
- Brans–Dicke theory
- Dual graviton
- Massive gravity
- Lovelock theory of gravity
- Alternatives to general relativity
References
[edit]- ^Horndeski, Gregory Walter (1974-09-01). "Second-order scalar-tensor field equations in a four-dimensional space".International Journal of Theoretical Physics.10(6): 363–384.Bibcode:1974IJTP...10..363H.doi:10.1007/BF01807638.ISSN0020-7748.S2CID122346086.
- ^Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified Gravity and Cosmology".Physics Reports.513(1–3): 1–189.arXiv:1106.2476.Bibcode:2012PhR...513....1C.doi:10.1016/j.physrep.2012.01.001.S2CID119258154.
- ^Deffayet, C.; Esposito-Farese, G.; Vikman, A. (2009-04-03). "Covariant Galileon".Physical Review D.79(8): 084003.arXiv:0901.1314.Bibcode:2009PhRvD..79h4003D.doi:10.1103/PhysRevD.79.084003.ISSN1550-7998.S2CID118855364.
- ^Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi (2011-09-01). "Generalized G-inflation: Inflation with the most general second-order field equations".Progress of Theoretical Physics.126(3): 511–529.arXiv:1105.5723.Bibcode:2011PThPh.126..511K.doi:10.1143/PTP.126.511.ISSN0033-068X.S2CID118587117.
- ^ATLAS Collaboration (2019-03-04). "Constraints on mediator-based dark matter and scalar dark energy models usingTeVcollision data collected by the ATLAS detector ".Jhep.05:142.arXiv:1903.01400.doi:10.1007/JHEP05(2019)142.S2CID119182921.
- ^Lombriser, Lucas; Taylor, Andy (2016-03-16). "Breaking a Dark Degeneracy with Gravitational Waves".Journal of Cosmology and Astroparticle Physics.2016(3): 031.arXiv:1509.08458.Bibcode:2016JCAP...03..031L.doi:10.1088/1475-7516/2016/03/031.ISSN1475-7516.S2CID73517974.
- ^Bettoni, Dario; Ezquiaga, Jose María; Hinterbichler, Kurt; Zumalacárregui, Miguel (2017-04-14). "Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity".Physical Review D.95(8): 084029.arXiv:1608.01982.Bibcode:2017PhRvD..95h4029B.doi:10.1103/PhysRevD.95.084029.ISSN2470-0010.S2CID119186001.
- ^Creminelli, Paolo; Vernizzi, Filippo (2017-10-16). "Dark Energy after GW170817".Physical Review Letters.119(25): 251302.arXiv:1710.05877.Bibcode:2017PhRvL.119y1302C.doi:10.1103/PhysRevLett.119.251302.PMID29303308.S2CID206304918.
- ^Sakstein, Jeremy; Jain, Bhuvnesh (2017-10-16). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories".Physical Review Letters.119(25): 251303.arXiv:1710.05893.Bibcode:2017PhRvL.119y1303S.doi:10.1103/PhysRevLett.119.251303.PMID29303345.S2CID39068360.
- ^Ezquiaga, Jose María; Zumalacárregui, Miguel (2017-12-18). "Dark Energy After GW170817: Dead Ends and the Road Ahead".Physical Review Letters.119(25): 251304.arXiv:1710.05901.Bibcode:2017PhRvL.119y1304E.doi:10.1103/PhysRevLett.119.251304.PMID29303304.S2CID38618360.
- ^Grossman, Lisa (2017-10-24)."What detecting gravitational waves means for the expansion of the universe".Science News.Retrieved2017-11-08.