Jump to content

2021 in reptile paleontology

From Wikipedia, the free encyclopedia

List of years in reptile paleontology
In science
2018
2019
2020
2021
2022
2023
2024
In paleobotany
2018
2019
2020
2021
2022
2023
2024
In paleontology
2018
2019
2020
2021
2022
2023
2024
In arthropod paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoentomology
2018
2019
2020
2021
2022
2023
2024
In paleomalacology
2018
2019
2020
2021
2022
2023
2024
In archosaur paleontology
2018
2019
2020
2021
2022
2023
2024
In mammal paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoichthyology
2018
2019
2020
2021
2022
2023
2024

Thislist offossilreptilesdescribed in 2021is a list of newtaxaof fossil reptiles that weredescribedduring the year 2021, as well as other significant discoveries and events related to reptilepaleontologythat occurred in 2021.

Squamates[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Afrotortrix[1]

Gen. et sp. nov

Valid

Rageet al.

Eocene

Algeria

Ananilioid-gradesnake. The type species isA. draaensis.

Caeruleodentatus[2]

Gen. et sp. nov

Valid

Scarpetta

Miocene

Split Rock Formation

United States
(Wyoming)

A member ofIguania.Genus includes new speciesC. lovei.

Ectenosaurus everhartorum[3]

Sp. nov

Valid

Willman, Konishi & Caldwell

Late Cretaceous

United States
(Kansas)

Aplioplatecarpinemosasaur.

Elgaria peludoverde[4]

Sp. nov

Valid

Scarpetta, Ledesma & Bell

Pliocene

Olla Formation

United States
(California)

A species ofElgaria.

Heterodon meadi[5]

Sp. nov

Valid

Jurestovsky

Hemphillian

Gray Fossil Site

United States
(Tennessee)

A species ofHeterodon.

Leiocephalus roquetus[6]

Sp. nov

Valid

Bochaton, Charles & Lenoble

Quaternary

France
(La DésiradeIsland)

Acurly-tailed lizard.

Morohasaurus[7]

Gen. et sp. nov

In press

Ikedaet al.

Early Cretaceous

Ohyamashimo Formation

Japan

A member or a relative of the groupMonstersauria.Genus includes new speciesM. kamitakiens.

Oculudentavis naga[8]

Sp. nov

Valid

Boletet al.

Late Cretaceous(Cenomanian)

Burmese amber

Myanmar

A lizard of uncertain phylogenetic placement.

Palaeopython schaali[9]

Sp. nov

In press

Smith & Scanferla

Eocene

Messel pit

Germany

Palaeovaranus lismonimenos[10]

Sp. nov

Valid

Georgalis, Čerňanský & Klembara

Probably lateEocene

Quercy Phosphorites Formation

France

A member ofAnguimorphabelonging to the familyPalaeovaranidae.

Paleochelco[11]

Gen. et sp. nov

Valid

Martinelli, Agnolín &Ezcurra

Late Cretaceous(Santonian)

Bajo de la Carpa Formation

Argentina

Possibly a member ofPolyglyphanodontia.The type species isP. occultato.

Paranecrosaurus[12]

Gen. et comb. nov

Valid

Smith & Habersetzer

Eocene

Messel Formation

Germany

Apalaeovaranidanguimorph.
The type species is"Saniwa"feistiStritzke (1983).

Phosphoroboa[13]

Gen. et comb. nov

Valid

Georgalis, Rabi & Smith

Probably middle or late Eocene

Quercy Phosphorites Formation

France

A snake belonging to the groupBooidea.The type species is"Palaeopython"filholiiRochebrune (1880).

Pluridens serpentis[14]

Sp. nov

Valid

Longrichet al.

Late Cretaceous(Maastrichtian)

Ouled Abdoun Basin

Morocco

Amosasaur.

Proegernia mikebulli[15]

Sp. nov

Valid

Thornet al.

LateOligocene

Namba Formation

Australia

Anegerniineskink.

Protodraco[16]

Gen. et sp. nov

Valid

Wagneret al.

Late Cretaceous(Cenomanian)

Burmese amber

Myanmar

A member of the familyAgamidae.Genus includes new speciesP. monocoli.

Pseudeumeces kyrillomethodicus[10]

Sp. nov

Valid

Georgalis, Čerňanský & Klembara

ProbablyOligocene

Quercy Phosphorites Formation

France

A member of the familyLacertidaebelonging to the subfamilyGallotiinae.

Rageryx[17]

Gen. et sp. nov

Valid

Smith & Scanferla

Eocene(YpresianorLutetian)

Messel Formation

Germany

Anerycineboidsnake. The type species isR. schmidi.

Sciroseps[18]

Gen. et sp. nov

Valid

Suarezet al.

Early Cretaceous(Albian)

Holly Creek Formation

United States
(Arkansas)

A member of the familyParamacellodidae.The type species isS. pawhuskai.

Xenodens[19]

Gen. et sp. nov

Valid

Longrichet al.

Late Cretaceous(Maastrichtian)

Ouled Abdoun Basin

Morocco

Amosasaurinemosasaur. Genus includes new speciesX. calminechari.

Research[edit]

  • A study on the evolution of tooth complexity insquamates,based on data from extant and fossil taxa, is published by Lafumaet al.(2021).[20]
  • A study on the diversity of jaw sizes, lower jaw shape and morphology of teeth in Cretaceous squamates is published by Herrera-Flores, Stubbs &Benton(2021), who interpret their findings as indicating that a substantial expansion ofecomorphologicaldiversity of squamates occurred in the mid-Cretaceous, 110–90 Ma, before the first rise in taxonomic diversity of this group in theCampanian.[21]
  • A study on the dietary preferences of lizards from the Upper Cretaceous Iharkút vertebrate locality (Hungary) is published by Gereet al.(2021).[22]
  • A study on the locomotion of five Cretaceous lizards, and on its implications for the knowledge of the ancestral locomotion type in lizards, is published by Villaseñor-Amador, Suárez & Cruz (2021), who interpret their findings as indicating thatHuehuecuetzpallimixtecuswas bipedal whileTijubinaponteiwas facultatively bipedal.[23]
  • Augé, Dion & Phélizon (2021) describe the lizard fauna from thePaleocenelocality of Montchenot (Paris Basin,France), and evaluate the implications of this fauna for the knowledge of diversity changes of European squamate faunas across the Paleocene/Eocene boundary.[24]
  • Čerňanskýet al.(2021) describe new fossil material of lizards from two Miocene sites in Kutch (Gujarat,India), providing new information on the composition andbiogeographyof South Asian lizard faunas during the Miocene.[25]
  • Revision of the fossil material of lizards and snakes from the Miocene of the Saint-Gérand-le-Puy area (France), including the first records ofOphisaurus holeciand thegallotiinelacertidJanosikiafrom France, is published by Georgalis & Scheyer (2021).[26]
  • A study on the fossil record of lizards and snakes from theGuadeloupeIslands, assessing their evolutionary history and diversity over the past 40,000 years, is published by Bochatonet al.(2021), who interpret their findings as indicative of a massive extinction of Guadeloupe's snakes and lizards following European colonization, preceded by thousands of years of coexistence with earlier Indigenous populations.[27]
  • A study on the shape and size variation in themaxillaeof extant New Zealanddiplodactylids,and on its implications for the knowledge of the affinities ofsubfossildiplodactylid remains, is published by Scarsbrooket al.(2021).[28]
  • A study aiming to assess the phylogenetic value of lacertid jaw elements from four Oligocene localities in France, and evaluating their implications for the knowledge of the lacertid species richness in the Oligocene, is published by Wenckeret al.(2021).[29]
  • A study on theosteologicalvariability in extant species of lacertid lizards, and on its implications for species delimitation in fossil lacertids, is published by Tschoppet al.(2021).[30]
  • Fossils ofGallotia goliathare described for the first time from theEl Hierroisland (Canary Islands) by Palacios-Garcíaet al.(2021), providing the first evidence of the possible coexistence of two giant fossil species ofGallotiaon the same island.[31]
  • Fossil material of a largeanguimorphlizard, possibly a member ofVaraniformesand potentially one of the largest Mesozoic terrestrial lizards, is described from the Upper Cretaceous (Maastrichtian) Basturs-1 site (Spain) by Cabezuelo Hernándezet al.(2021).[32]
  • A study on the anatomy and phylogenetic relationships ofTetrapodophisamplectusis published by Caldwellet al.(2021), who reinterpret this squamate as adolichosaur.[33]
  • Ayaguarasaurinemosasauroidis reported from theCenomanian-Turonianbeds ofCoahuila(Mexico) by Jiménez-Huidobroet al.(2021), representing the earliest occurrence of a non-aigialosaurmosasauroid from North America reported to date.[34]
  • Redescription and a study on the geographic provenance of the fossil material of"Liodon"asiaticumis published by Bardetet al.(2021).[35]
  • One to seven month-long life histories of specimens ofPlatecarpustympaniticusandClidastespropythoncollected from chalk deposits of theWestern Interior SeawayandMississippi EmbaymentinKansasandAlabamaare reconstructed by Travis Tayloret al.(2021), who interpret their findings as indicative of semi-regular travels of these mosasaurs from marine to freshwater coastal environments and consumption of freshwater.[36]
  • Fossil material providing the first evidence of the presence ofPlotosaurus-type mosasaurs in the Northwestern Pacific Ocean reported to date is described from theCampanianHiraiso Formation andMaastrichtianIsoai Formation (Japan) by Katoet al.(2021).[37]
  • First confirmed non-dental mosasaur remains from theMaastrichtianBreien Member of theHell Creek Formation(North Dakota,United States) are described by Van Vranken & Boyd (2021).[38]
  • A study on the evolutionary history of snakes, aiming to determine possible impact of theCretaceous–Paleogene extinction eventon the evolution and dispersal of snakes, is published by Kleinet al.(2021).[39]
  • An assemblage of vertebrae ofPalaeophisafricanus,representing the most abundant material of this snake reported to date and providing new information on its anatomy, is described from the Eocene (Lutetian) ofTogoby Georgaliset al.(2021).[40]
  • A vertebra ofNaja romaniis described from the Miocene (Turolian) Solnechnodolsk locality (Northern Caucasus, Russia) by Syromyatnikova, Tesakov & Titov (2021), representimg the latest known record of this species and expanding its geographic and geological range.[41]
  • Biton & Bailon (2021) report the discovery of fossil material of adders belonging to theBitis arietanscomplex from the early Late Pleistocene of theQafzeh cave(Israel), representing the northernmost record of the expansion of these adders outside Africa reported to date, and evaluate the implications of this finding for the knowledge of the climatic and environmental conditions in the surroundings of the Qafzeh Cave during theMousterianHomo sapiensoccupations.[42]

Ichthyosauromorphs[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Auroroborealia[43]

Gen. et sp. nov

In press

Zverkovet al.

Late Triassic

Russia
(Sakha)

An early ichthyosaur of uncertain phylogenetic placement, possibly withtoretocnemidorparvipelvianaffinities. Genus includes new speciesA. incognita.

Catutosaurus[44]

Gen. et sp. nov

Valid

Fernándezet al.

Late Jurassic(Tithonian)

Argentina

Anichthyosaurbelonging to the familyOphthalmosauridae.Genus includes new speciesC. gaspariniae.

Cymbospondylus youngorum[45]

Sp. nov

Sanderet al.

Middle Triassic(Anisian)

Favret Formation

United States
(Nevada)

Kazakhstanosaurus[46] Gen. et sp. nov Bolatovna and Maksutovich Late Jurassic KazakhstanRussia An ichthyosaur belonging to the family Ophthalmosauridae. Genus includes new speciesK. shchuchkinensisandK. efimovi.
Kyhytysuka[47] Gen. et comb. nov Cortés, Maxwell, and Larsson Early Cretaceous(Barremian-Aptian) Paja Formation Colombia An ichthyosaur belonging to the family Ophthalmosauridae. The type species is"Platypterygius" sachicarumPáramo (1997).

Jabalisaurus[48]

Gen. et sp. nov

Valid

Barrientos-Lara and Alvarado-Ortega

Late Jurassic(Kimmeridgian)

La Casita Formation

Mexico

An ichthyosaur belonging to the family Ophthalmosauridae. The type species isJ. meztli

Parrassaurus[49]

Gen. et sp. nov

Valid

Barrientos-Lara & Alvarado-Ortega

Late Jurassic(Tithonian)

La Caja Formation

Mexico

An ichthyosaur belonging to the family Ophthalmosauridae. The type species isP. yacahuitztli

Sumpalla[50]

Gen. et sp. nov

Valid

Camposet al.

Late Jurassic

Vaca Muerta

Argentina

An ichthyosaur belonging to the family Ophthalmosauridae. Genus includes new speciesS. argentina

Research[edit]

  • Description of anatomy of the palate ofChaohusaurusbrevifemoralisis published by Yin, Ji & Zhou (2021).[51]
  • A study on the anatomy of the skull of theholotypespecimen ofBesanosaurusleptorhynchus,description of additional specimens from theMiddle TriassicBesano Formation(Italy/Switzerland) and a study on the phylogenetic relationships of this species is published by Bindelliniet al.(2021), who interpretMikadocephalusgracilirostrisas ajunior synonymofB. leptorhynchus.[52]
  • Newstenopterygiidichthyosaurfossils, representing some of the best preservedToarcianspecimens from Europe (including a specimen with possible soft tissue preservation), are described from south-eastFranceby Martinet al.(2021), who also attempt to determine the causes of the state of preservation of the studied specimens, and evaluate the implications of the study site for the knowledge of the environmental perturbations associated with theToarcian Oceanic Anoxic Event.[53]
  • A specimen ofIchthyosaurusbelonging or related to the speciesI. communisis identified from theSinemurianCoimbra Formation (Portugal) by Sousa &Mateus(2021), representing the southernmost occurrence ofIchthyosaurusreported to date.[54]
  • A study on the anatomy ofnarialstructures in Early Jurassic ichthyosaurs, and on their implications for the knowledge of the evolution of the bony subdivision of the external naris in more derived ichthyosaurs, is published by Massare, Wahl & Lomax (2021).[55]
  • The first unambiguous ichthyosaur remains from Antarctica reported to date are described from the Upper Jurassic Ameghino (=Nordenskjöld) Formation by Camposet al.(2021), who also revise remains of two ichthyosaur specimens from the Upper Jurassic ofMadagascar,and describe a third specimen which is the most complete ichthyosaur from this region ofGondwanaland.[56]
  • A study aiming to determine whetherCretaceousichthyosaur remains fromAustraliacan be attributed to the speciesPlatypterygiusaustralison the basis of vertebral data alone is published by Vakil, Webb & Cook (2021).[57]

Sauropterygians[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Eiectus[58]

Gen. et sp. nov

Valid

Noè & Gómez-Pérez

Early Cretaceous(AptianandAlbian)

Australia

Apliosaurid.Genus includes new speciesE. longmani.

Fluvionectes[59]

Gen. et sp. nov

Valid

Campbellet al.

Late Cretaceous(Campanian)

Dinosaur Park Formation

Canada
(Alberta)

Anelasmosauridplesiosaur.The type species isF. sloanae.

Monquirasaurus[58]

Gen. et comb. nov

Valid

Noè & Gómez-Pérez

Early Cretaceous

Colombia

A pliosaurid; a new genus for"Kronosaurus"boyacensisHampe (1992).

Plesiopharos[60]

Gen. et sp. nov

Valid

Puértolas-Pascualet al.

Early Jurassic(Sinemurian)

Coimbra Formation

Portugal

An early member ofPlesiosauroidea.The type species isP. moelensis.

Wumengosaurus rotundicarpus[61] Sp. nov Valid Qinet al. Middle Triassic(Anisian) China A possiblepachypleurosaur;a species ofWumengosaurus.

Research[edit]

  • A study on the anatomy and replacement pattern of teeth inHenoduschelyopsis published by Pommeryet al.(2021).[62]
  • A large teeth-bearing dentary of aneosauropterygianof uncertain phylogenetic placement, probably related to the enigmaticLamprosauroidesgoepperti,is described from the LowerMuschelkalk(Anisian,Middle Triassic) of Winterswijk (Netherlands) by Spiekman & Klein (2021).[63]
  • A study on the bonehistologyand possible affinities ofProneusticosaurussilesiacusis published by Klein & Surmik (2021).[64]
  • Description of a new specimen ofPanzhousaurusrotundirostrisfrom theGuanling Formation(Guizhou, China), providing new information on the anatomy of this reptile, and a study on the phylogenetic relationships of this species is published by Linet al.(2021).[65]
  • New specimen ofDiandongosaurus,belonging or related to the speciesD. acutidentatus(though approximately three times larger than theholotypeof that species) and lacking most of the right hindlimb, is described from theAnisianGuanling Formation(China) by Liuet al.(2021), who interpret the right hindlimb of this specimen as likely amputated in an attack by an unknown hunter.[66]
  • The remains of an indeterminate plesiosaur are reported from theHauterivianKatterfeld Formation (Chile) by Poblete-Huancaet al.(2021), representing the first record of a Lower Cretaceous plesiosaur from Chile.[67]
  • A tooth crown of apliosauridbelonging to the subfamilyBrachaucheninaeis described from theCenomanianLa Luna Formation (Venezuela) by Bastiaanset al.(2021), representing the most recent record of a pliosaurid from South America reported to date.[68]
  • A study aiming to reconstruct the musculature of limbs ofCryptocliduseurymerusis published by Krahl & Witzel (2021).[69]
  • A study on the postcranial materials ofxenopsarianplesiosaurs from theEromanga Basin(Australia), aiming to determine the utility of vertebral analysis for differentiating and/or grouping Australian plesiosaur specimens, is published by Vakil, Webb & Cook (2021).[70]
  • Marxet al.(2021) describe a new specimen ofCardiocoraxmukulufrom the Maastrichtian Mocuio Formation (Angola), including the most complete plesiosaur skull from sub-Saharan Africa reported to date, and evaluate the implications of this specimen for the knowledge of the anatomy and phylogenetic relationships of this plesiosaur.[71]
  • Redescription of the anatomy of the skull ofThalassomedonhaningtoni,and a study on the phylogenetic relationships of this species, is published by Sachset al.(2021).[72]
  • Description of one of the earliest quarried elasmosaurid specimens from theCampanian–Maastrichtian strata ofAntarctica,identified as a non-aristonectineelasmosaurid belonging to the groupWeddellonectia,and a study on the evolution of dorsal vertebral count in members of Weddellonectia, is published by O’Gorman, Aspromonte & Reguero (2021).[73]
  • New information of the skeletal anatomy ofAlexandronecteszealandiensisis provided by O'Gormanet al.(2021).[74]
  • The most complete specimen ofKawanecteslafquenianumreported to date, providing new information on the anatomy of this plesiosaur, is described by O’Gorman (2021).[75]
  • Taleviet al.(2021) describe a pathological cervical vertebra of a plesiosaur from theMaastrichtianofArgentina,and interpret this finding as the first record of tuberculosis-like infection in a plesiosaur reported to date.[76]

Turtles[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Adocus kohaku[citation needed]

Sp. nov

Valid

Hirayamaet al.

Late Cretaceous(Turonian)

Tamagawa Formation

Japan

Akoranemys[77] Gen. et sp. nov In press Pérez-García Late Cretaceous (Cenomanian) Madagascar A member of the familyBothremydidaebelonging to the tribe Bothremydini and subtribe Bothremydina. Genus includes new speciesA. madagasika.

Apeshemys[78]

Gen. et comb. nov

Valid

Pérez-García

Miocene(Burdigalian)

Moghra Formation

Egypt

A member of the familyPodocnemididaebelonging to the subfamilyErymnochelyinae.The type species is"Podocnemis" aegyptiacaAndrews (1900).

Chelonoidis petrocellii[79]

Sp. nov

Valid

Agnolin

Middle Pleistocene

Argentina

A tortoise, a species ofChelonoidis.

Elkanemys[80]

Gen. et sp. nov

In press

Maniel, de la Fuente & Canale

Late Cretaceous (Cenomanian)

Candeleros Formation

Argentina

A member of the familyBothremydidaebelonging to the tribeCearachelyini.Genus includes new speciesE. pritchardi.

Globochelus[81]

Gen. et sp. nov

Valid

De Lapparent de Broin, Breton & Rioult

Late Jurassic(Kimmeridgian)

France

A member of the familyPlesiochelyidae.Genus includes new speciesG. lennieri.

Notapachemys[82]

Gen. et sp. nov

Valid

Bourque

Eocene(Chadronian)

Chadron Formation

United States
(Nebraska)

A member of the familyGeoemydidae.The type species isN. oglala.

Palatobaena knellerorum[83]

Sp. nov

Valid

Lysonet al.

Paleocene(Danian)

Denver Formation

United States
(Colorado)

A member of the familyBaenidae.

Plastomenus joycei[84]

Sp. nov

Valid

Lyson, Petermann & Miller

Paleocene(Danian)

Denver Formation

United States
(Colorado)

A soft-shelled turtle.

Pleurochayah[85]

Gen. et sp. nov

Valid

Adrianet al.

Late Cretaceous (Cenomanian)

Lewisville Formation

United States
(Texas)

A member of the family Bothremydidae. The type species isP. appalachius.

Pleurosternon moncayensis[86]

Sp. nov

In press

Pérez-Garcíaet al.

Jurassic-Cretaceoustransition

Spain

Sahonachelys[87]

Gen. et sp. nov

Valid

Joyceet al.

Late Cretaceous (Maastrichtian)

Maevarano Formation

Madagascar

A member ofPleurodirabelonging to the groupPelomedusoides.The type species isS. mailakavava.

Shetwemys[78]

Gen. et comb. nov

Valid

Pérez-García

Oligocene(Rupelian)

Jebel Qatrani Formation

Egypt

A member of the family Podocnemididae belonging to the subfamily Erymnochelyinae. The type species is"Podocnemis" fajumensisAndrews (1903).

Sindhochelys[88]

Gen. et sp. nov

Valid

Lapparent de Broinet al.

Paleocene(probably earlyDanian)

Khadro Formation

Pakistan

A member of the family Bothremydidae. The type species isS. ragei.

Yakemys[89] Gen. et sp. nov Tonget al. Early Cretaceous Phu Kradung Formation Thailand A member ofMacrobaenidae.The type species isY. multiporcata.

Research[edit]

  • A study on the evolution of the organization and composition of the turtle shell is published by Cordero & Vlachos (2021).[90]
  • A study on turtle forelimbmorphometrics,their relationship to habitat type, and their implications for the knowledge of habitat preferences of fossil turtles, is published by Dudgeonet al.(2021).[91]
  • A study on the morphology of the skeleton ofChinlechelystenertesta,and on its implications for the knowledge of the origin of turtles, is published by Lichtig &Lucas(2021), who reject the interpretation ofEunotosaurusafricanusandPappochelysrosinaeasstem-turtles.[92]
  • A study on thehistologyof thecarapaceand limb bones ofAraripemysbarretoi,and on the relation between shell microstructure and lifestyle of this turtle, is published by Senaet al.(2021).[93]
  • Revision of the Cretaceous bothremydid"Polysternon"atlanticumis published by Pérez-García, Ortega & Murelaga (2021), who consider this taxon to be the senior synonym ofIberoccitanemysconvenarum,resulting in a new combinationIberoccitanemys atlanticum.[94]
  • Reconstruction of the skull and neuroanatomical structures ofTartaruscolateodoriiis presented by Martín-Jiménez & Pérez-García (2021).[95]
  • New fossil material ofStupendemysgeographicaandCaninemystridentatais described from the MioceneLa Victoria Formation(Colombia) by Cadenaet al.(2021), who reestablish the validity ofC. tridentataas a taxon distinct fromS. geographica,and evaluate the implications of the studied fossils for the knowledge of the changes in the shell and scutes during theontogenyinS. geographica.[96]
  • Redescription and a study on the phylogenetic relationships ofUluopsuluopsis published by Rollot, Evers & Joyce (2021).[97]
  • Redescription of the anatomy of the skull ofArundelemysdardeniis published by Evers, Rollot & Joyce (2021).[98]
  • A study on the morphological variability in the shell ofPleurosternonbullockiiis published by Guerrero & Pérez-García (2021).[99]
  • A study on the ontogenetic development ofPleurosternon bullockii,based on data from small specimens from theBerriasianPurbeck Limestone Group(United Kingdom), is published by Guerrero & Pérez-García (2021).[100]
  • New fossil material ofPlesiochelysis described from the Upper Jurassic (Tithonian) of the Lusitanian Basin (Portugal) by Pérez-García & Ortega (2021), who also revise theOxfordianspecies"Hispaniachelys" prebeticaand transfer it to the genusPlesiochelys,making it the oldest representative of this genus reported to date.[101]
  • Two specimens ofthalassochelydianturtles, including a partial hindlimb with well-preserved remains of skin and a large, articulated skeleton ofThalassemysbruntrutana,documenting the presence of particularly elongate forelimbs in this turtle, are described from the Upper Jurassic ofGermanyby Joyce, Mäuser & Evers (2021), who interpret these specimens as providing evidence of presence of highly keratinized and partially stiffened flippers in some Late Jurassic turtles, structurally similar to those of extantsea turtles.[102]
  • A study on the skeletal anatomy ofManchurochelysmanchoukuoensis,based on data from a new specimens from the Lower CretaceousYixian Formation(China), is published by Li, Zhou & Rabi (2021).[103]
  • A large, thick-shelled turtle egg, preserving an embryo of ananhsiungchelyidpossibly belonging to the speciesYuchelysnanyangensis,is described from the Upper CretaceousXiaguan Formation(China) by Keet al.(2021).[104]
  • An upper Miocene to lower Pliocenecarettochelyidfossil, representing the southernmost record of this group reported to date, is described from Beaumaris (Victoria,Australia) by Ruleet al.(2021), who interpret this finding and a discontinuous record of soft-shell turtles in the Cenozoic of Queensland as evidence of at least two colonizations of Australia byTrionychia,pre-dating the extantpig-nosed turtle.[105]
  • Georgalis (2021) describes a large costal of a soft-shelled turtle from theEoceneofMali,representing the first record ofpan-trionychidturtles from thePaleogeneof Africa reported to date.[106]
  • New specimens of thetortoisesHadrianusmajusculusandH. corsoniandgeoemydidsEchmatemyshaydeniandE. naomi,including skull and juvenile material, and providing new information on the morphology, intraspecific variation and ontogeny of these turtles, are described from theEoceneWillwood FormationandGreen River Formation(Wyoming,United States) by Lichtig, Lucas & Jasinski (2021).[107]
  • A study on the phylogenetic relationships of Eocene geoemydids"Ocadia" kehreriand"Ocadia" messelianafrom theMessel pit(Germany) is published by Ascarrunz, Claude & Joyce (2021).[108]
  • Description of new fossil material ofBridgeremyspusillafrom theUinta Formation(Utah,United States), and a study on the differences in morphology of the shell and likely ecology ofB. pusillaand two coeval species ofEchmatemys,is published by Adrianet al.(2021).[109]
  • A study on the phylogenetic relationships and evolutionary history of the tortoiseChelonoidis alburyorumfromThe Bahamas,based on data from nearly complete mitochondrial genomes, is published by Kehlmaieret al.(2021).[110]
  • A study on the identity of the type material ofCentrochelys atlantica,based on data from ancient DNA, is published by Kehlmaieret al.(2021), who identify this material as belonging to a specimen of thered-footed tortoise,leaving the Quaternary tortoise known from fossils excavated on theSal Islandin the 1930s without a scientific name.[111]
  • A well-preservedhumerusa of giant turtle, representing the first known record of giganticMesozoicsea turtles in Africa, is described from theMaastrichtianDakhla Formation(Egypt) by Abu El-Kheir, AbdelGawad & Kassab (2021).[112]
  • New specimen ofEuclasteswielandiis described from the Paleocene (Danian)Hornerstown Formation(New Jersey,United States) by Ullmann & Carr (2021), who interpret this specimen as proving thatE. wielandiis asenior synonymofCatapleura repanda,and study the phylogenetic relationships ofE. wielandi.[113]
  • A hard-shelled sea turtle specimen, preserved with vestigial soft tissues and likely with incompletely healed bite marks inflicted by a crocodylian or another large-sized seagoing tetrapod, is described from the Eocene (Ypresian)Fur Formation(Denmark) by De La Garzaet al.(2021).[114]

Archosauriformes[edit]

Archosaurs[edit]

Other archosauriforms[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Bharitalasuchus[115]

Gen. et sp. nov

Valid

Ezcurra, Bandyopadhyay & Gower

Middle Triassic

Yerrapalli Formation

India

A member of the familyErythrosuchidae.The type species isB. tapani.

Heteropelta[116]

Gen. et sp. nov

Valid

Dalla Vecchia

Middle Triassic (Anisian)

Torbiditi d’Aupa Formation

Italy

A member ofArchosauriformesof uncertain phylogenetic placement, possibly abasalarchosauriform, basalphytosauror asuchianarchosaur. The type species isH. boboi.

Incertovenator[117]

Gen. et sp. nov

Valid

Yáñezet al.

Late Triassic

Ischigualasto Formation

Argentina

An archosauriform (possibly an archosaur) of uncertain phylogenetic placement. The type species isI. longicollum.

Kranosaura[118]

Gen. et sp. nov

Valid

Nesbittet al.

Late Triassic(Norian)

Upper Maleri Formation

India

A dome-headed archosauriform closely related toTriopticus,with which it forms the new cladeProtopyknosia.The type species isK. kuttyi.

Syntomiprosopus[119]

Gen. et sp. nov

Valid

Heckertet al.

Late Triassic(Norian)

Chinle Formation

US
(Arizona)

A short-faced archosauriform of uncertain affinity, possibly an early-divergingcrocodylomorph.The type species isS. sucherorum.

Research[edit]

  • A study on thefemoralshape variation and on the relationship between femoral morphology and locomotor habits in early archosaurs and non-archosaur archosauriforms is published by Pintoreet al.(2021).[120]
  • Fossil material of a member of the genusDoswelliabelonging or related to the speciesD. kaltenbachiis described from the Upper TriassicChinle Formation(Arizona,United States) by Parkeret al.(2021), who interpret this finding as evidence of biogeographic links between the vertebrate assemblage from the Chinle Formation and other Late Triassic assemblages fromTexasandVirginia.[121]
  • A study on bonehistologyofproterochampsidspecimens from the TriassicChañares Formation(Argentina), aiming to infer history traits related to growth dynamics,ontogeneticchanges, dermal armorhistogenesisand lifestyle, is published by Ponceet al.(2021).[122]
  • A largephytosaurspecimen likely belonging to the speciesSmilosuchusgregorii,preserved with evidence of pathologies evoking aspects of bothosteomyelitisandhypertrophic osteopathy,is described fromNorianstrata near St. Johns (Arizona,United States) by Heckert, Viner & Carrano (2021).[123]
  • A study on theenamelmicrostructure of phytosaur teeth from western and eastern North American localities, evaluating their implications for the knowledge ofbiogeographicdistributions and ecology of phytosaurs, is published by Hoffman, Miller-Camp & Heckert (2021).[124]

Other reptiles[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Balearosaurus[125]

Gen. et sp. nov

Valid

Matamales-Andreuet al.

Permian

Spain

Amoradisaurinecaptorhinid.Genus includes new speciesB. bombardensis.

Delorhynchus multidentatus[126]

Sp. nov

Roweet al.

Permian (Cisuralian)

United States
(Oklahoma)

Elorhynchus[127]

Gen. et sp. nov

Valid

Ezcurraet al.

Triassic(LadinianCarnian)

Chañares Formation

Argentina

Arhynchosaur.Genus includes new speciesE. carrolli.

Karutia[128]

Gen. et sp. nov

Valid

Cisneroset al.

Permian(Cisuralian)

Pedra de Fogo Formation

Brazil

A member of the familyAcleistorhinidae.Genus includes new speciesK. fortunata.

Mengshanosaurus[129] Gen. et sp. nov Valid Menget al. Early Cretaceous(Berriasian-Valanginian) Mengyin Formation China Achoristoderebelonging toNeochoristodera,the type species isM. minimus.

Microsphenodon[130]

Gen. et sp. nov

Valid

Chambi-Trowellet al.

Late Triassic (Norian)

Brazil

An early eusphenodontianrhynchocephalian.Genus includes new speciesM. bonapartei.

Oryporan[131]

Gen. et sp. nov

Valid

Pinheiro, Silva-Neves & Da-Rosa

Early Triassic

Sanga do Cabral Formation

Brazil

Aprocolophonidparareptile.Genus includes new speciesO. insolitus.

Rhodotheratus[132]

Gen. et comb. nov

Valid

Albright, Sumida & Jung

Early Permian

Hennessey Formation

United States
(Oklahoma)

A captorhinid. Genus includes"Captorhinikos"parvusOlson (1970).

Sphenofontis[133]

Gen. et sp. nov

Valid

Villaet al.

Late Jurassic (Kimmeridgian)

Torleite Formation

Germany

A rhynchocephalian belonging to the familySphenodontidae.The type species isS. velserae.

Stauromatodon[134]

Gen. et sp. nov

Valid

Sobral,Sues& Schoch

Middle Triassic(Ladinian)

Erfurt Formation

Germany

Adiapsidreptile of uncertain phylogenetic placement. Genus includes new speciesS. mohli.

Taytalura[135]

Gen. et sp. nov

Valid

Martínezet al.

Late Triassic

Ischigualasto Formation

Argentina

Astem-lepidosaur.Genus includes new speciesT. alcoberi.

Tika[136]

Gen. et sp. nov

Valid

Apesteguía, Garberoglio & Gómez

Late Cretaceous (Cenomanian)

Candeleros Formation

Argentina

Asphenodontinesphenodontid.Genus includes new speciesT. giacchinoi.

Trullidens[137]

Gen. et sp. nov

Valid

Kligmanet al.

Late Triassic (Norian)

United States
(Colorado)

A rhynchocephalian belonging to the groupOpisthodontia.Genus includes new speciesT. purgatorii.

Vinitasaura[138]

Gen. et sp. nov

Valid

Sues& Kligman

Late Triassic(Carnian)

Vinita Formation

United States
(Virginia)

A member ofLepidosauromorpha.Genus includes new speciesV. lizae.

Research[edit]

  • Revision of putativeCarboniferousreptile tracks, evaluating their implications for the knowledge of the evolution of locomotor capabilities of putative trackmakers and of the biogeography of the earliest reptiles, is published by Marchettiet al.(2021), who interpretHylopushardingias tracks probably produced by anamniotereptiliomorphs.[139]
  • Footprints of early reptiles, including footprints representing the ichnotaxonNotalacertamissouriensisand footprints possibly belonging to the ichnogenusNotalacerta,are described from theMeisenheim,Tambach,SulzbachandStandenbühlformations (PennsylvanianandCisuralian,Germany) by Marchettiet al.(2021), potentially extending the European record of the ichnogenusNotalacertaback to theMoscovian.[140]
  • Revision of diagnostic characters used to identifymesosaurspecies is published by Piñeiroet al.(2021), who report that they could not find unambiguousautapomorphiesthat characterizedBrazilosaurusorStereosternum.[141]
  • Redescription of theholotypeand description of the second known specimen ofEudibamuscursoris,providing new information on the skeletal anatomy and locomotor abilities of this reptile, is published by Bermanet al.(2021).[142]
  • A study on the anatomy of the skull ofNochelesaurusalexanderiis published by Van den Brandtet al.(2021).[143]
  • A study on the anatomy of the postcranial skeletons ofBradysaurusbaini,EmbrithosaurusschwarziandNochelesaurus alexanderiis published by van den Brandtet al.(2021).[144]
  • A study on the skeletal anatomy and phylogenetic relationships ofProvelosaurusamericanus,based on data from new fossils and a review of the previously described material, is published by Cisneros, Dentzien-Dias & Francischini (2021).[145]
  • Romanoet al.(2021) provide a body mass estimate ofScutosauruskarpinskii.[146]
  • Tetrapodfootprints assigned to theichnogenusHyloidichnus,produced bycaptorhinidsor similar reptiles and providing new information on the locomotion of these reptiles, are described from thePermianPelitic Formation of Gonfaron (Le Luc Basin,Var,France) by Loggheet al.(2021).[147]
  • Description of a new specimen ofAnthracodromeuslongipesfrom theCarboniferousAllegheny Group(Ohio,United States), preserving anungual-bearingmanusandpedes,and a study on the locomotor ecology of this reptile is published by Mannet al.(2021).[148]
  • Partialiliumof a non-archosauromorphneodiapsidreptile is described from the upperPanchet Formation(India) by Ezcurra, Bandyopadhyay & Sen (2021), expanding known diversity ofEarly Triassicreptiles from this formation.[149]
  • A study on the skeletal anatomy, gliding apparatus and phylogenetic relationships ofWeigeltisaurusjaekeli,based on data from a nearly complete skeleton from the Upper PermianKupferschiefer(Germany), is published by Pritchardet al.(2021).[150]
  • Redescription of the anatomy of the skull ofCoelurosauravuselivensisis published by Buffaet al.(2021).[151]
  • A study on the anatomy and phylogenetic relationships ofPaliguanawhiteiis published by Fordet al.(2021).[152]
  • A study on the anatomy and phylogenetic relationships ofMarmorettaoxoniensisis published by Griffithset al.(2021).[153]
  • Putativechoristoderanmaxillafrom theBathonianPeski locality (Moskvoretskaya Formation;Moscow Oblast,Russia) is reinterpreted as a fossil a member ofLepidosauromorphasimilar toFraxinisauraandMarmorettaby Skutschaset al.(2021), who interpret this specimens as the first known record ofbasallepidosauromorphs in theMiddle Jurassicof European Russia.[154]
  • Choristoderan vertebrae, representing the first record of choristoderans from the Upper Cretaceous of Asia reported to date, are described from theTuronianTamagawa Formation (Japan) by Matsumotoet al.(2021).[155]
  • New fossil material ofneochoristoderes,representing the first known record of this group from the Atlantic coastal plain, is described from the latest Cretaceous of theNavesink Formationand theEllisdale Fossil Site(New Jersey,United States) by Dudgeonet al.(2021), who also attempt to determine possible causes of the apparent rarity of neochoristoderes inAppalachia.[156]
  • A study comparing cervical morphology and neck mobility inChampsosaurus,Simoedosaurusand extantgharial,and evaluating their implications for the knowledge of the feeding behaviour of choristoderans, is published by Matsumoto, Fujiwara &Evans(2021).[157]
  • A study on the phylogenetic relationships ofarchosauromorphreptiles, aiming to determine the relationships of "protorosaurs",is published by Spiekman,Fraser& Scheyer (2021), who name a new cladeDinocephalosauridae.[158]
  • A study on the evolution of the morphological diversity of late Permian to Late Jurassic archosauromorph reptiles is published by Foth, Sookias & Ezcurra (2021).[159]
  • A study on the evolution of body size of archosauromorph reptiles during the first 90 million years of their evolutionary history is published by Pradelli, Leardi & Ezcurra (2021).[160]
  • Revision and a study on the phylogenetic affinities ofMalerisaurusis published by Nesbittet al.(2021), who interpret this reptile as an early diverging, but late-surviving, carnivorous member ofAzendohsauridae.[161]
  • Revision and a study on the phylogenetic relationships ofEifelosaurustriadicusis published by Sues, Ezcurra & Schoch (2021).[162]
  • A study on patterns of neurocentral suture closure in the vertebrae ofhyperodapedontinerhynchosaurs during theirontogeny,evaluating their implications for the knowledge of the evolution of patterns of neurocentral suture closure inarchosauromorphreptiles and most likely ancestral condition inarchosaurs,is published by Heinrichet al.(2021).[163]
  • A study on the anatomy of the skull of theholotypespecimen ofHyperodapedonsanjuanensisis published by Gentil &Ezcurra(2021).[164]

Reptiles in general[edit]

  • A study comparing species richness of synapsids and reptiles during thePennsylvanianandCisuralian,evaluating the impact of the preservation biases, of the effect ofLagerstätten,and of contested phylogenetic placement of late Carboniferous and early Permian tetrapods on estimates of relative diversity patterns of synapsids and reptiles, is published by Brocklehurst (2021), who interprets his findings as challenging the assumption that synapsids dominated during the Pennsylvanian and Cisuralian.[165]
  • A study on the evolution of the feeding apparatus in earlyamniotes,aiming to quantify variation in evolutionary rates and constraints during early diversification of amniotes, is published by Brocklehurst & Benson (2021).[166]
  • A study comparing the morphology of the maxillary canal ofHeleosaurusscholtzi,Varanosaurusacutrostris,OrovenatormayorumandProlacertabroomi,and evaluating the implications of the morphology of the maxillary canal for the knowledge of the phylogenetic placement ofvaranopids,is published by Benoitet al.(2021).[167]
  • Fischer, Weis & Thuy (2021) describe new ichthyosaur and plesiosaur fossils from successive geological formations inBelgiumandLuxembourgspanning the Lower–Middle Jurassic transition, and evaluate the implications of these fossils for the knowledge of the evolution of marine reptile assemblages across the Early–Middle Jurassic transition.[168]
  • A study on rates of morphological evolution in the evolutionary history of squamates and rhynchocephalians is published by Herrera-Floreset al.(2021).[169]

References[edit]

  1. ^Rage, J.-C.; Adaci, M.; Bensalah, M.; Mahboubi, M.; Marivaux, L.; Mebrouk, F.; Tabuce, R. (2021)."Latest Early-early Middle Eocene deposits of Algeria (Glib Zegdou, HGL50), yield the richest and most diverse fauna of amphibians and squamate reptiles from the Palaeogene of Africa"(PDF).Palæovertebrata.44(1): e1.doi:10.18563/pv.44.1.e1.S2CID233892725.
  2. ^Scarpetta, S. G. (2021). "Iguanian lizards from the Split Rock Formation, Wyoming: exploring the modernization of the North American lizard fauna".Journal of Systematic Palaeontology.19(3): 221–251.Bibcode:2021JSPal..19..221S.doi:10.1080/14772019.2021.1894612.S2CID233402435.
  3. ^Willman, A. J.; Konishi, T.; Caldwell, M. W. (2021). "A new species ofEctenosaurus(Mosasauridae: Plioplatecarpinae) from western Kansas, USA, reveals a novel suite of osteological characters for the genus ".Canadian Journal of Earth Sciences.58(9): 741–755.Bibcode:2021CaJES..58..741W.doi:10.1139/cjes-2020-0175.
  4. ^Scarpetta, S. G.; Ledesma, D. T.; Bell, C. J. (2021)."A new extinct species of alligator lizard (Squamata:Elgaria) and an expanded perspective on the osteology and phylogeny of Gerrhonotinae ".BMC Ecology and Evolution.21(1): Article number 184.doi:10.1186/s12862-021-01912-8.PMC8482661.PMID34587907.
  5. ^Jurestovsky, D. J. (2021). "Small Colubroids from the Late Hemphillian Gray Fossil Site of Northeastern Tennessee".Journal of Herpetology.55(4): 422–431.doi:10.1670/21-008.S2CID240093403.
  6. ^Bochaton, C.; Charles, L.; Lenoble, A. (2021)."Historical and fossil evidence of an extinct endemic species ofLeiocephalus(Squamata: Leiocephalidae) from the Guadeloupe Islands "(PDF).Zootaxa.4927(3): 383–409.doi:10.11646/zootaxa.4927.3.4.PMID33756701.S2CID232337806.
  7. ^Ikeda, T.; Ota, H.; Tanaka, T.; Ikuno, K.; Kubota, K.; Tanaka, K.; Saegusa, H. (2021)."A fossil Monstersauria (Squamata: Anguimorpha) from the Lower Cretaceous Ohyamashimo Formation of the Sasayama Group in Tamba City, Hyogo Prefecture, Japan".Cretaceous Research.130:Article 105063.doi:10.1016/j.cretres.2021.105063.ISSN0195-6671.S2CID239230916.
  8. ^Bolet, A.; Stanley, E. L.; Daza, J. D.; Arias, J. S.; Čerňanský, A.; Vidal-García, M.; Bauer, A. M.; Bevitt, J. J.; Peretti, A.; Evans, S. E. (2021)."Unusual morphology in the mid-Cretaceous lizardOculudentavis".Current Biology.31(15): 3303–3314.e3.Bibcode:2021CBio...31E3303B.doi:10.1016/j.cub.2021.05.040.hdl:11336/148383.PMID34129826.
  9. ^Smith, K. T.; Scanferla, A. (2021). "More than one large constrictor snake lurked around paleolake Messel".Palaeontographica Abteilung A.323(1–3): 75–103.doi:10.1127/pala/2021/0119.S2CID245089117.
  10. ^abGeorgalis, G. L.; Čerňanský, A.; Klembara, J. (2021)."Osteological atlas of new lizards from the Phosphorites du Quercy (France), based on historical, forgotten, fossil material".Geodiversitas.43(9): 219–293.doi:10.5252/geodiversitas2021v43a9.
  11. ^Martinelli, A. G.; Agnolín, F.; Ezcurra, M. D. (2021)."Unexpected new lizard from the Late Cretaceous of southern South America sheds light on Gondwanan squamate diversity".Revista del Museo Argentino de Ciencias Naturales.Nueva Series.23(1): 57–80.doi:10.22179/REVMACN.23.716.hdl:11336/167951.S2CID243557642.
  12. ^Smith, K. T.; Habersetzer, J. (2021)."The anatomy, phylogenetic relationships, and autecology of the carnivorous lizard"Saniwa" feistiStritzke, 1983 from the Eocene of Messel, Germany ".Comptes Rendus Palevol.20(23): 441–506.doi:10.5852/cr-palevol2021v20a23.
  13. ^Georgalis, G. L.; Rabi, M.; Smith, K. T. (2021)."Taxonomic revision of the snakes of the generaPalaeopythonandPaleryx(Serpentes, Constrictores) from the Paleogene of Europe ".Swiss Journal of Palaeontology.140(1): Article 18.Bibcode:2021SwJP..140...18G.doi:10.1186/s13358-021-00224-0.
  14. ^Longrich, N. R.; Bardet, N.; Khaldoune, F.; Khadiri Yazami, O.; Jalil, N.-E. (2021)."Pluridens serpentis,a new mosasaurid (Mosasauridae: Halisaurinae) from the Maastrichtian of Morocco and implications for mosasaur diversity "(PDF).Cretaceous Research.126:Article 104882.Bibcode:2021CrRes.12604882L.doi:10.1016/j.cretres.2021.104882.
  15. ^Thorn, K. M.; Hutchinson, M. N.; Lee, M. S. Y.; Brown, N. J.; Camens, A. B.; Worthy, T. H. (2021)."A new species ofProegerniafrom the Namba Formation in South Australia and the early evolution and environment of Australian egerniine skinks ".Royal Society Open Science.8(2): 201686.Bibcode:2021RSOS....801686T.doi:10.1098/rsos.201686.ISSN2054-5703.PMC8074667.PMID33972861.
  16. ^Wagner, P.; Stanley, E. L.; Daza, J. D.; Bauer, A. M. (2021). "A new agamid lizard in mid-Cretaceous amber from northern Myanmar".Cretaceous Research.124:Article 104813.Bibcode:2021CrRes.12404813W.doi:10.1016/j.cretres.2021.104813.S2CID233704307.
  17. ^Smith, K. T.; Scanferla, A. (2021)."A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany)".Geodiversitas.43(1): 1–24.doi:10.5252/geodiversitas2021v43a1.
  18. ^Suarez, C. A.; Frederickson, J.; Cifelli, R. L.; Pittman, J. G.; Nydam, R. L.; Hunt-Foster, R. K.; Morgan, K. (2021)."A new vertebrate fauna from the Lower Cretaceous Holly Creek Formation of the Trinity Group, southwest Arkansas, USA".PeerJ.9:e12242.doi:10.7717/peerj.12242.PMC8542373.PMID34721970.
  19. ^Longrich, N. R.; Bardet, N.; Schulp, A. S.; Jalil, N.-E. (2021)."Xenodens calminecharigen. et sp. nov., a bizarre mosasaurid (Mosasauridae, Squamata) with shark-like cutting teeth from the upper Maastrichtian of Morocco, North Africa "(PDF).Cretaceous Research.123:Article 104764.Bibcode:2021CrRes.12304764L.doi:10.1016/j.cretres.2021.104764.hdl:1874/418727.S2CID233567615.
  20. ^Lafuma, F.; Corfe, I. J.; Clavel, J.; Di-Poï, N. (2021)."Multiple evolutionary origins and losses of tooth complexity in squamates".Nature Communications.12(1): Article number 6001.Bibcode:2021NatCo..12.6001L.doi:10.1038/s41467-021-26285-w.PMC8516937.PMID34650041.
  21. ^Herrera-Flores, J. A.; Stubbs, T. L.; Benton, M. J. (2021)."Ecomorphological diversification of squamates in the Cretaceous".Royal Society Open Science.8(3): Article ID 201961.Bibcode:2021RSOS....801961H.doi:10.1098/rsos.201961.PMC8074880.PMID33959350.
  22. ^Gere, K.; Bodor, E. R.; Makádi, L.; Ősi, A. (2021). "Complex food preference analysis of the Late Cretaceous (Santonian) lizards from Iharkút (Bakony Mountains, Hungary)".Historical Biology: An International Journal of Paleobiology.33(12): 3686–3702.Bibcode:2021HBio...33.3686G.doi:10.1080/08912963.2021.1887862.S2CID233961106.
  23. ^Villaseñor-Amador, D.; Suárez, N. X.; Cruz, J. A. (2021). "Bipedalism in Mexican Albian lizard (Squamata) and the locomotion type in other Cretaceous lizards".Journal of South American Earth Sciences.109:Article 103299.Bibcode:2021JSAES.10903299V.doi:10.1016/j.jsames.2021.103299.S2CID233526155.
  24. ^Augé, M. L.; Dion, M.; Phélizon, A. (2021)."The lizard (Reptilia, Squamata) assemblage from the Paleocene of Montchenot (Paris Basin, MP6)".Geodiversitas.43(17): 645–661.doi:10.5252/geodiversitas2021v43a17.S2CID237537775.
  25. ^Čerňanský, A.; Singh, N. P.; Patnaik, R.; Sharma, K. M.; Tiwari, R. P.; Sehgal, R. K.; Singh, N. A.; Choudhary, D. (2021)."The Miocene fossil lizards from Kutch (Gujarat), India: a rare window to the past diversity of this subcontinent".Journal of Paleontology.96:213–223.doi:10.1017/jpa.2021.85.S2CID239688746.
  26. ^Georgalis, G. L.; Scheyer, T. M. (2021)."Lizards and snakes from the earliest Miocene of Saint-Gérand-le-Puy, France: an anatomical and histological approach of some of the oldest Neogene squamates from Europe".BMC Ecology and Evolution.21(1): Article number 144.doi:10.1186/s12862-021-01874-x.PMC8278609.PMID34256702.
  27. ^Bochaton, C.; Paradis, E.; Bailon, S.; Grouard, S.; Ineich, I.; Lenoble, A.; Lorvelec, O.; Tresset, A.; Boivin, N. (2021)."Large-scale reptile extinctions following European colonization of the Guadeloupe Islands".Science Advances.7(21): eabg2111.Bibcode:2021SciA....7.2111B.doi:10.1126/sciadv.abg2111.PMC8133755.PMID34138736.
  28. ^Scarsbrook, L.; Sherratt, E.; Hitchmough, R. A.; Rawlence, N. J. (2021)."Skeletal variation in extant species enables systematic identification of New Zealand's large, subfossil diplodactylids".BMC Ecology and Evolution.21(1): Article number 67.doi:10.1186/s12862-021-01808-7.PMC8080345.PMID33906608.
  29. ^Wencker, L. C. M.; Tschopp, E.; Villa, A.; Augé, M. L.; Delfino, M. (2021)."Phylogenetic value of jaw elements of lacertid lizards (Squamata: Lacertoidea): a case study with Oligocene material from France".Cladistics.37(6): 765–802.doi:10.1111/cla.12460.hdl:2318/1824383.PMID34841590.
  30. ^Tschopp, E.; Napoli, J. G.; Wencker, L. C. M.; Delfino, M.; Upchurch, P. (2021). "How to Render Species Comparable Taxonomic Units Through Deep Time: a Case Study on Intraspecific Osteological Variability in Extant and Extinct Lacertid Lizards".Systematic Biology.71(4): 875–900.doi:10.1093/sysbio/syab078.PMID34605923.
  31. ^Palacios-García, S.; Cruzado-Caballero, P.; Casillas, R.; Castillo Ruiz, C. (2021). "Quaternary biodiversity of the giant fossil endemic lizards from the island of El Hierro (Canary Islands, Spain)".Quaternary Science Reviews.262:Article 106961.Bibcode:2021QSRv..26206961P.doi:10.1016/j.quascirev.2021.106961.S2CID236302752.
  32. ^Cabezuelo Hernández, T.; Bolet, A.; Torices, A.; Pérez-García, A. (2021)."Identification of a large anguimorph lizard (Reptilia, Squamata) by an articulated hindlimb from the upper Maastrichtian (Upper Cretaceous) of Basturs-1 (Lleida, Spain)".Cretaceous Research.131:Article 105094.doi:10.1016/j.cretres.2021.105094.ISSN0195-6671.S2CID244352137.
  33. ^Caldwell, M. W.; Simões, T. R.; Palci, A.; Garberoglio, F. F.; Reisz, R. R.; Lee, M. S. Y.; Nydam, R. L. (2021)."Tetrapodophis amplectusis not a snake: re-assessment of the osteology, phylogeny and functional morphology of an Early Cretaceous dolichosaurid lizard ".Journal of Systematic Palaeontology.19(13): 893–952.Bibcode:2021JSPal..19..893C.doi:10.1080/14772019.2021.1983044.S2CID244414151.
  34. ^Jiménez-Huidobro, P.; López-Conde, O. A.; Chavarría-Arellano, M. L.; Porras-Múzquiz, H. (2021). "A yaguarasaurine mosasauroid from the upper Cenomanian−lower Turonian of Coahuila, northern Mexico".Journal of Vertebrate Paleontology.41(3): e1986516.Bibcode:2021JVPal..41E6516J.doi:10.1080/02724634.2021.1986516.S2CID244281080.
  35. ^Bardet, N.; Desmares, D.; Sánchez-Pellicer, R.; Gardin, S. (2021)."Rediscovery of"Liodon" asiaticumRépelin, 1915, a Mosasaurini (Squamata, Mosasauridae, Mosasaurinae) from the Upper Cretaceous of the vicinity of Jerusalem – Biostratigraphical insights from microfossils ".Comptes Rendus Palevol.20(20): 351–372.doi:10.5852/cr-palevol2021v20a20.
  36. ^Travis Taylor, L.; Minzoni, R. T.; Suarez, C. A.; Gonzalez, L. A.; Martin, L. D.; Lambert, W. J.; Ehret, D. J.; Harrell, T. L. (2021). "Oxygen isotopes from the teeth of Cretaceous marine lizards reveal their migration and consumption of freshwater in the Western Interior Seaway, North America".Palaeogeography, Palaeoclimatology, Palaeoecology.573:Article 110406.Bibcode:2021PPP...57310406T.doi:10.1016/j.palaeo.2021.110406.S2CID234799487.
  37. ^Kato, T.; Nakajima, Y.; Shiseki, K.; Ando, H. (2021). "Advanced mosasaurs from the Upper Cretaceous Nakaminato Group in Japan".Island Arc.30(1). e12431.Bibcode:2021IsArc..30E2431K.doi:10.1111/iar.12431.S2CID240303333.
  38. ^Van Vranken, N. E.; Boyd, C. A. (2021)."The firstin situcollection of a mosasaurine from the marine Breien Member of the Hell Creek Formation in south-central North Dakota, USA ".PaleoBios.38:ucmp_paleobios_54460.
  39. ^Klein, C. G.; Pisani, D.; Field, D. J.; Lakin, R.; Wills, M. A.; Longrich, N. R. (2021)."Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction".Nature Communications.12(1): Article number 5335.Bibcode:2021NatCo..12.5335K.doi:10.1038/s41467-021-25136-y.PMC8440539.PMID34521829.
  40. ^Georgalis, G. L.; Guinot, G.; Kassegne, K. E.; Amoudji, Y. Z.; Johnson, A. K. C.; Cappetta, H.; Hautier, L. (2021)."An assemblage of giant aquatic snakes (Serpentes, Palaeophiidae) from the Eocene of Togo".Swiss Journal of Palaeontology.140(1): Article 20.Bibcode:2021SwJP..140...20G.doi:10.1186/s13358-021-00236-w.
  41. ^Syromyatnikova, E.; Tesakov, A.; Titov, V. (2021)."Naja romani(Hoffstetter, 1939) (Serpentes: Elapidae) from the late Miocene of the Northern Caucasus: the last East European large cobra ".Geodiversitas.43(19): 683–689.doi:10.5252/geodiversitas2021v43a19.S2CID238231298.
  42. ^Biton, R.; Bailon, S. (2021). "An African adder (Bitis arietanscomplex) at Qafzeh Cave, Israel, during the early Late Pleistocene (MIS 5) record ".Journal of Quaternary Science.in press.doi:10.1002/jqs.3402.S2CID245159565.
  43. ^Zverkov, N. G.; Grigoriev, D. V.; Wolniewicz, A. S.; Konstantinov, A. G.; Sobolev, E. S. (2021). "Ichthyosaurs from the Upper Triassic (Carnian–Norian) of the New Siberian Islands, Russian Arctic, and their implications for the evolution of the ichthyosaurian basicranium and vertebral column".Earth and Environmental Science Transactions of the Royal Society of Edinburgh.113:51–74.doi:10.1017/S1755691021000372.S2CID245153589.
  44. ^Fernández, M. S.; Campos, L.; Maxwell, E. E.; Garrido, A. C. (2021). "Catutosaurus gaspariniae,gen. et sp. nov. (Ichthyosauria, Thunnosauria) of the Upper Jurassic of Patagonia and the evolution of the ophthalmosaurids ".Journal of Vertebrate Paleontology.41(1): e1922427.Bibcode:2021JVPal..41E2427F.doi:10.1080/02724634.2021.1922427.S2CID236312664.
  45. ^Sander, P. M.; Griebeler, E. M.; Klein, N.; Velez Juarbe, J.; Wintrich, T.; Revell, L. J.; Schmitz, L. (2021). "Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans".Science.374(6575): eabf5787.doi:10.1126/science.abf5787.PMID34941418.S2CID245444783.
  46. ^Болатовна, Якупова Джамиля; Максутович, Ахмеденов Кажмурат (2021)."НОВЫЙ ВИД KAZAKHSTANOSAURUS EFIMOVI YAKUPOVA ET AKHMEDENOV SP. NOV. (ICHTHYOSAURIA, UNDOROSAURIDAE) ИЗ ВЕРХНЕЮРСКИХ ОТЛОЖЕНИЙ СРЕДНЕГО ПОВОЛЖЬЯ РОССИИ".Ученые записки Казанского университета. Серия Естественные науки.163(2): 251–263.ISSN2542-064X.
  47. ^Cortés, Dirley; Maxwell, Erin E.; Larsson, Hans C. E. (2021-11-22)."Re-appearance of hypercarnivore ichthyosaurs in the Cretaceous with differentiated dentition: revision of 'Platypterygius' sachicarum (Reptilia: Ichthyosauria, Ophthalmosauridae) from Colombia".Journal of Systematic Palaeontology.19(14): 969–1002.Bibcode:2021JSPal..19..969C.doi:10.1080/14772019.2021.1989507.ISSN1477-2019.S2CID244512087.
  48. ^Barrientos-Lara, J. I.; Alvarado-Ortega, J. (2021). "A new ophthalmosaurid (Ichthyosauria) from the Upper Kimmeridgian deposits of the La Casita formation, near Gómez Farías, Coahuila, northern Mexico".Journal of South American Earth Sciences.111:Article 103499.Bibcode:2021JSAES.11103499B.doi:10.1016/j.jsames.2021.103499.
  49. ^Barrientos-Lara, J. I.; Alvarado-Ortega, J. (2021). "A new Tithonian ophthalmosaurid ichthyosaur from Coahuila in northeastern Mexico".Alcheringa: An Australasian Journal of Palaeontology.45(2): 203–216.Bibcode:2021Alch...45..203B.doi:10.1080/03115518.2021.1922755.S2CID236270217.
  50. ^Campos, L.; Fernández, M. S.; Herrera, Y.; Garrido, A. (2021). "Morphological disparity in the evolution of the ophthalmosaurid forefin: new clues from the Upper Jurassic of Argentina".Papers in Palaeontology.7(4): 1995–2020.Bibcode:2021PPal....7.1995C.doi:10.1002/spp2.1374.S2CID237770509.
  51. ^Yin, Y.; Ji, C.; Zhou, M. (2021)."The anatomy of the palate in Early TriassicChaohusaurus brevifemoralis(Reptilia: Ichthyosauriformes) based on digital reconstruction ".PeerJ.9:e11727.doi:10.7717/peerj.11727.PMC8269639.PMID34268013.
  52. ^Bindellini, G.; Wolniewicz, A. S.; Miedema, F.; Scheyer, T. M.; Dal Sasso, C. (2021)."Cranial anatomy ofBesanosaurus leptorhynchusDal Sasso & Pinna, 1996 (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio, Italy/Switzerland: taxonomic and palaeobiological implications ".PeerJ.9:e11179.doi:10.7717/peerj.11179.PMC8106916.PMID33996277.
  53. ^Martin, J. E.; Suan, G.; Suchéras-Marx, B.; Rulleau, L.; Schlögl, J.; Janneau, K.; Williams, M.; Léna, A.; Grosjean, A.-S.; Sarroca, E.; Perrier, V.; Fernandez, V.; Charruault, A.-L.; Maxwell, E. E.; Vincent, P. (2021). "Stenopterygiids from the lower Toarcian of Beaujolais and a chemostratigraphic context for ichthyosaur preservation during the Toarcian Oceanic Anoxic Event". In M. Reolid; L. V. Duarte; E. Mattioli; W. Ruebsam (eds.).Carbon Cycle and Ecosystem Response to the Jenkyns Event in the Early Toarcian (Jurassic)(PDF).Vol. 514. The Geological Society of London. pp. 153–172.doi:10.1144/SP514-2020-232.S2CID240424255.{{cite book}}:|journal=ignored (help)
  54. ^Sousa, J.; Mateus, O. (2021)."The southernmost occurrence ofIchthyosaurusfrom the Sinemurian of Portugal ".Fossil Record.24(2): 287–294.Bibcode:2021FossR..24..287S.doi:10.5194/fr-24-287-2021.hdl:10362/131844.
  55. ^Massare, J. A.; Wahl, W. R.; Lomax, D. R. (2021)."Narial structures inIchthyosaurusand other Early Jurassic ichthyosaurs as precursors to a completely subdivided naris ".Paludicola.13(2): 128–139.
  56. ^Campos, L.; Fernández, M. S.; Herrera, Y.; Talevi, M.; Concheyro, A.; Gouiric-Cavalli, S.; O'Gorman, J. P.; Santillana, S. N.; Acosta-Burlaille, L.; Moly, J. J.; Reguero, M. A. (2021)."Bridging the southern gap: First definitive evidence of Late Jurassic ichthyosaurs from Antarctica and their dispersion routes".Journal of South American Earth Sciences.109:Article 103259.Bibcode:2021JSAES.10903259C.doi:10.1016/j.jsames.2021.103259.ISSN0895-9811.S2CID233714015.
  57. ^Vakil, V.; Webb, G. E.; Cook, A. G. (2021). "Can vertebral remains differentiate more than one species of Australian Cretaceous ichthyosaur?".Alcheringa: An Australasian Journal of Palaeontology.44(4): 537–554.doi:10.1080/03115518.2020.1853809.S2CID231875679.
  58. ^abNoè, L. F.; Gómez-Pérez, M. (2021). "Giant pliosaurids (Sauropterygia; Plesiosauria) from the Lower Cretaceous peri-Gondwanan seas of Colombia and Australia".Cretaceous Research.132:Article 105122.doi:10.1016/j.cretres.2021.105122.
  59. ^Campbell, J. A.; Mitchell, M. T.; Ryan, M. J.; Anderson, J. S. (2021)."A new elasmosaurid (Sauropterygia: Plesiosauria) from the non-marine to paralic Dinosaur Park Formation of southern Alberta, Canada".PeerJ.9:e10720.doi:10.7717/peerj.10720.PMC7882142.PMID33614274.
  60. ^Puértolas-Pascual, E.; Marx, M.; Mateus, O.; Saleiro, A.; Fernandes, A. E.; Marinheiro, J.; Tomás, C.; Mateus, S. (2021)."A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea".Acta Palaeontologica Polonica.66(2): 369–388.doi:10.4202/app.00815.2020.hdl:10362/123694.
  61. ^Qin, Yanjiao; He, Xiao; Luo, Yongming; Hu, Xinrui; Jiang, Liangbing; Deng, Xiaojie; Shi, Zhenhua; Ran, Weiyu (2021)."A New Species ofWumengosaurusfrom Panxian Fauna in Middle Triassic of Guizhou Province ".Guizhou Geology(in Literary Chinese).38(4): 373–381.doi:10.3969/j.issn.1000-5943.2021.04.004.ISSN1000-5943.
  62. ^Pommery, Y.; Scheyer, T. M.; Neenan, J. M.; Reich, T.; Fernandez, V.; Voeten, D. F. A. E.; Losko, A. S.; Werneburg, I. (2021)."Dentition and feeding in Placodontia: tooth replacement inHenodus chelyops".BMC Ecology and Evolution.21(1): Article number 136.doi:10.1186/s12862-021-01835-4.PMC8256584.PMID34225664.
  63. ^Spiekman, S. N. F.; Klein, N. (2021)."An enigmatic lower jaw from the Lower Muschelkalk (Anisian, Middle Triassic) of Winterswijk provides insights into dental configuration, tooth replacement and histology".Netherlands Journal of Geosciences.100:e17.Bibcode:2021NJGeo.100E..17S.doi:10.1017/njg.2021.12.
  64. ^Klein, N.; Surmik, D. (2021)."Bone histology of eosauropterygian diapsidProneusticosaurus silesiacusfrom the Middle Triassic of Poland reveals new insights into taxonomic affinities ".Acta Palaeontologica Polonica.66(3): 585–598.doi:10.4202/app.00850.2020.
  65. ^Lin, W.-B.; Jiang, D.-Y.; Rieppel, O.; Motani, R.; Tintori, A.; Sun, Z.-Y.; Zhou, M. (2021). "Panzhousaurus rotundirostrisJiang et al., 2019 (Diapsida: Sauropterygia) and the Recovery of the Monophyly of Pachypleurosauridae ".Journal of Vertebrate Paleontology.41(1): e1901730.Bibcode:2021JVPal..41E1730L.doi:10.1080/02724634.2021.1901730.S2CID234853964.
  66. ^Liu, Q.; Yang, T.; Cheng, L.; Benton, M. J.; Moon, B. C.; Yan, C.; An, Z.; Tian, L. (2021)."An injured pachypleurosaur (Diapsida: Sauropterygia) from the Middle Triassic Luoping Biota indicating predation pressure in the Mesozoic".Scientific Reports.11(1): Article number 21818.Bibcode:2021NatSR..1121818L.doi:10.1038/s41598-021-01309-z.PMC8575933.PMID34750442.
  67. ^Poblete-Huanca, Andrea; Suárez, Manuel; Rubilar-Rogers, David; Gressier, Jean Baptiste; Arraño, Constanza; Ormazábal, Matías (2021). "First record of a Lower Cretaceous (Hauterivian) plesiosaur from Chile".Cretaceous Research.128:Article number 104963.Bibcode:2021CrRes.12804963P.doi:10.1016/j.cretres.2021.104963.ISSN0195-6671.
  68. ^Bastiaans, D.; Madzia, D.; Carrillo-Briceño, J. D.; Sachs, S. (2021)."Equatorial pliosaurid from Venezuela marks the youngest South American occurrence of the clade".Scientific Reports.11(1): Article number 15501.Bibcode:2021NatSR..1115501B.doi:10.1038/s41598-021-94515-8.PMC8322105.PMID34326353.
  69. ^Krahl, A.; Witzel, U. (2021)."Foreflipper and hindflipper muscle reconstructions ofCryptoclidus eurymerusin comparison to functional analogues: introduction of a myological mechanism for flipper twisting ".PeerJ.9:e12537.doi:10.7717/peerj.12537.PMC8684327.PMID35003916.
  70. ^Vakil, V.; Webb, G.; Cook, A. (2021)."Taxonomic utility of Early Cretaceous Australian plesiosaurian vertebrae".Palaeontologia Electronica.24(3): Article number 24.3.a30.doi:10.26879/1095.
  71. ^Marx, M. P.; Mateus, O.; Polcyn, M. J.; Schulp, A. S.; Gonçalves, A. O.; Jacobs, L. L. (2021)."The cranial anatomy and relationships ofCardiocorax mukulu(Plesiosauria: Elasmosauridae) from Bentiaba, Angola ".PLOS ONE.16(8): e0255773.Bibcode:2021PLoSO..1655773M.doi:10.1371/journal.pone.0255773.PMC8370651.PMID34403433.
  72. ^Sachs, S.; Lindgren, J.; Madzia, D.; Kear, B. P. (2021). "Cranial osteology of the mid-Cretaceous elasmosauridThalassomedon haningtonifrom the Western Interior Seaway of North America ".Cretaceous Research.123:Article 104769.Bibcode:2021CrRes.12304769S.doi:10.1016/j.cretres.2021.104769.S2CID234055157.
  73. ^O’Gorman, J. P.; Aspromonte, F.; Reguero, M. (2021). "New data on one of the first plesiosaur (Reptilia, Sauropterygia) skeletons recovered from Antarctica, with comments on the dorsal sacral and regions of elasmosaurids".Alcheringa: An Australasian Journal of Palaeontology.45(3): 354–368.doi:10.1080/03115518.2021.1958378.S2CID239679057.
  74. ^O'Gorman, J. P.; Otero, R. A.; Hiller, N.; O'Keefe, R. F.; Scofield, R. P.; Fordyce, E. (2021). "CT-scan description ofAlexandronectes zealandiensis(Elasmosauridae, Aristonectinae), with comments on the elasmosaurid internal cranial features ".Journal of Vertebrate Paleontology.41(2): e1923310.Bibcode:2021JVPal..41E3310O.doi:10.1080/02724634.2021.1923310.S2CID237518012.
  75. ^O’Gorman, J. P. (2021). "The most complete specimen ofKawanectes lafquenianum(Sauropterygia, Plesiosauria): new data on basicranial anatomy and possible sexual dimorphism in elasmosaurids ".Cretaceous Research.125:Article 104836.Bibcode:2021CrRes.12504836O.doi:10.1016/j.cretres.2021.104836.
  76. ^Talevi, M.; Rothschild, B. M.; Mitidieri, M.; Fernández, M. S. (2021). "Infectious spondylitis with pathology mimicking that of tuberculosis in a cervical vertebra of a plesiosaur from the Upper Cretaceous of Patagonia, Argentina".Cretaceous Research.128:Article 104982.Bibcode:2021CrRes.12804982T.doi:10.1016/j.cretres.2021.104982.
  77. ^Pérez-García, A. (2021-02-01)."A new bothremydid turtle (Pleurodira) from the Upper Cretaceous (Cenomanian) of Madagascar".Cretaceous Research.118:104645.Bibcode:2021CrRes.11804645P.doi:10.1016/j.cretres.2020.104645.ISSN0195-6671.S2CID225033660.
  78. ^abPérez-García, A. (2021)."New shell information and new generic attributions for the Egyptian podocnemidid turtles"Podocnemis" fajumensis(Oligocene) and"Podocnemis" aegyptiaca(Miocene) ".Fossil Record.24(2): 247–262.Bibcode:2021FossR..24..247P.doi:10.5194/fr-24-247-2021.
  79. ^Agnolin, F. L. (2021). "A New Tortoise from the Pleistocene of Argentina with Comments on the Extinction of Late Pleistocene Tortoises and Plant Communities".Paleontological Journal.55(8): 913–922.Bibcode:2021PalJ...55..913A.doi:10.1134/S0031030121080037.S2CID245330393.
  80. ^Maniel, I.J.; de la Fuente, M. S.; Zhuo, J.I. (2021). "The first Cearachelyini (Pelomedusoides, Bothremydidae) turtle from the Upper Cretaceous of Patagonia, and an overview of the occurrence and diversity of Pelomedusoides in Patagonia".Cretaceous Research.125:Article 104869.Bibcode:2021CrRes.12504869M.doi:10.1016/j.cretres.2021.104869.
  81. ^de Lapparent de Broin, F.; Breton, G.; Rioult, M. (2021)."Mesozoic turtles from Le Havre (France), review, definition ofGlobochelus lennierin. g. n. sp. and new data onTropidemys langii,Plesiochelyidae ".Annales de Paléontologie.107(1): Article 102447.doi:10.1016/j.annpal.2020.102447.S2CID234139698.
  82. ^Bourque, J. R. (2021)."A new geoemydid (Testudines, aff. Rhinoclemmydinae) from the upper Eocene Chadron Formation (White River Group) of northwestern Nebraska"(PDF).Bulletin of the Florida Museum of Natural History.58(5): 86–101.doi:10.58782/flmnh.nlkv7912.
  83. ^Lyson, T. R.; Petermann, H.; Toth, N.; Bastien, S.; Miller, I. M. (2021). "A new baenid turtle,Palatobaena knellerorumsp. nov., from the lower Paleocene (Danian) Denver Formation of south-central Colorado, U.S.A. ".Journal of Vertebrate Paleontology.41(2): e1925558.Bibcode:2021JVPal..41E5558L.doi:10.1080/02724634.2021.1925558.S2CID237518055.
  84. ^Lyson, T. R.; Petermann, H.; Miller, I. M. (2021). "A new plastomenid trionychid turtle,Plastomenus joycei,sp. nov., from the earliest Paleocene (Danian) Denver Formation of south-central Colorado, U.S.A. ".Journal of Vertebrate Paleontology.41(1): e1913600.Bibcode:2021JVPal..41E3600L.doi:10.1080/02724634.2021.1913600.ISSN0272-4634.S2CID236335666.
  85. ^Adrian, B.; Smith, H. F.; Noto, C. R.; Grossman, A. (2021)."An early bothremydid from the Arlington Archosaur Site of Texas".Scientific Reports.11(1): Article number 9555.Bibcode:2021NatSR..11.9555A.doi:10.1038/s41598-021-88905-1.PMC8137945.PMID34017016.
  86. ^Pérez-García, A.; Martín-Jiménez, M.; Aurell, M.; Canudo, J.I.; Casternera, D. (2021)."A new Iberian pleurosternid (Jurassic-Cretaceous transition, Spain) and first neuroanatomical study of this clade of stem turtles".Historical Biology: An International Journal of Paleobiology.34(2): 298–311.doi:10.1080/08912963.2021.1910818.S2CID234822940.
  87. ^Joyce, W. G.; Rollot, Y.; Evers, S. W.; Lyson, T. R.; Rahantarisoa, L. J.; Krause, D. W. (2021)."A new pelomedusoid turtle,Sahonachelys mailakavava,from the Late Cretaceous of Madagascar provides evidence for convergent evolution of specialized suction feeding among pleurodires ".Royal Society Open Science.8(5): Article ID 210098.Bibcode:2021RSOS....810098J.doi:10.1098/rsos.210098.PMC8097199.PMID34035950.
  88. ^de Lapparent de Broin, F.; Métais, G.; Bartolini, A.; Brohi, I. A.; Lashari, R. A.; Marivaux, L.; Merle, D.; Warar, M. A.; Solangi, S. H. (2021)."First report of a bothremydid turtle,Sindhochelys ragein. gen., n. sp., from the early Paleocene of Pakistan, systematic and palaeobiogeographic implications ".Geodiversitas.43(25): 1341–1363.doi:10.5252/geodiversitas2021v43a25.S2CID245220767.
  89. ^Tong, Haiyan; Chanthasit, Phornphen; Naksri, Wilailuck; Ditbanjong, Pitaksit; Suteethorn, Suravech; Buffetaut, Eric; Suteethorn, Varavudh; Wongko, Kamonlak; Deesri, Uthumporn; Claude, Julien (December 2021)."Yakemys multiporcata n. g. n. sp., a Large Macrobaenid Turtle from the Basal Cretaceous of Thailand, with a Review of the Turtle Fauna from the Phu Kradung Formation and Its Stratigraphical Implications".Diversity.13(12): 630.doi:10.3390/d13120630.
  90. ^Cordero, G. A.; Vlachos, E. (2021). "Reduction, reorganization and stasis in the evolution of turtle shell elements".Biological Journal of the Linnean Society.134(4): 892–911.doi:10.1093/biolinnean/blab122.
  91. ^Dudgeon, T. W.; Livius, M. C. H.; Alfonso, N.; Tessier, S.; Mallon, J. C. (2021)."A new model of forelimb ecomorphology for predicting the ancient habitats of fossil turtles".Ecology and Evolution.11(23): 17071–17079.Bibcode:2021EcoEv..1117071D.doi:10.1002/ece3.8345.PMC8668755.PMID34938493.
  92. ^Lichtig, A. J.; Lucas, S. G. (2021)."Chinlechelysfrom the Upper Triassic of New Mexico, USA, and the origin of turtles ".Palaeontologia Electronica.24(1): Article number 24.1.a13.doi:10.26879/886.
  93. ^Sena, M. V. A.; Bantim, R. A. M.; Saraiva, A. A. F.; Sayão, J. M.; Oliveira, G. R. (2021)."Shell and long-bone histology, skeletochronology, and lifestyle ofAraripemys barretoi(Testudines: Pleurodira), a side-necked turtle of the Lower Cretaceous from Brazil ".Anais da Academia Brasileira de Ciências.93(Suppl. 2): e20201606.doi:10.1590/0001-3765202120201606.PMID34378648.S2CID236979010.
  94. ^Pérez-García, A.; Ortega, F.; Murelaga, X. (2021)."Iberoccitanemys atlanticum(Lapparent de Broin & Murelaga, 1996) n. comb.: new data on the diversity and paleobiogeographic distributions of the Campanian-Maastrichtian bothremydid turtles of Europe ".Comptes Rendus Palevol.20(32): 667–676.doi:10.5852/cr-palevol2021v20a32.S2CID238704135.
  95. ^Martín-Jiménez, M.; Pérez-García, A. (2021)."Neuroanatomical Study and Three-Dimensional Reconstruction of the Skull of a Bothremydid Turtle (Pleurodira) Based on the European EoceneTartaruscola teodorii".Diversity.13(7): Article 298.doi:10.3390/d13070298.
  96. ^Cadena, E.-A.; Link, A.; Cooke, S. B.; Stroik, L. K.; Vanegas, A. F.; Tallman, M. (2021)."New insights on the anatomy and ontogeny of the largest extinct freshwater turtles".Heliyon.7(12): e08591.Bibcode:2021Heliy...708591C.doi:10.1016/j.heliyon.2021.e08591.PMC8717240.PMID35005268.
  97. ^Rollot, Y.; Evers, S. W.; Joyce, W. G. (2021)."A redescription of the Late Jurassic (Tithonian) turtleUluops uluopsand a new phylogenetic hypothesis of Paracryptodira ".Swiss Journal of Palaeontology.140(1): Article 23.Bibcode:2021SwJP..140...23R.doi:10.1186/s13358-021-00234-y.PMC8550081.PMID34721284.
  98. ^Evers, S. W.; Rollot, Y.; Joyce, W. G. (2021)."New interpretation of the cranial osteology of the Early Cretaceous turtleArundelemys dardeni(Paracryptodira) based on a CT-based re-evaluation of the holotype ".PeerJ.9:e11495.doi:10.7717/peerj.11495.PMC8174147.PMID34131522.
  99. ^Guerrero, A.; Pérez-García, A. (2021). "Morphological variability and shell characterization of the European uppermost Jurassic to lowermost Cretaceous stem turtlePleurosternon bullockii(Paracryptodira, Pleurosternidae) ".Cretaceous Research.125:Article 104872.Bibcode:2021CrRes.12504872G.doi:10.1016/j.cretres.2021.104872.
  100. ^Guerrero, A.; Pérez-García, A. (2021)."Ontogenetic development of the European basal aquatic turtlePleurosternon bullockii(Paracryptodira, Pleurosternidae) ".Fossil Record.24(2): 357–377.Bibcode:2021FossR..24..357G.doi:10.5194/fr-24-357-2021.
  101. ^Pérez-García, A.; Ortega, F. (2021). "New finds of the turtlePlesiochelysin the Upper Jurassic of Portugal and evaluation of its diversity in the Iberian Peninsula ".Historical Biology: An International Journal of Paleobiology.34:121–129.doi:10.1080/08912963.2021.1903000.S2CID234877934.
  102. ^Joyce, W. G.; Mäuser, M.; Evers, S. W. (2021)."Two turtles with soft tissue preservation from the platy limestones of Germany provide evidence for marine flipper adaptations in Late Jurassic thalassochelydians".PLOS ONE.16(6): e0252355.Bibcode:2021PLoSO..1652355J.doi:10.1371/journal.pone.0252355.PMC8174742.PMID34081728.
  103. ^Li, L.; Zhou, C.-F.; Rabi, M. (2021). "The skeletal anatomy ofManchurochelys manchoukuoensis(Pan-Cryptodira: Sinemydidae) from the Lower Cretaceous Yixian Formation ".Historical Biology: An International Journal of Paleobiology.34(3): 538–554.doi:10.1080/08912963.2021.1934834.S2CID238780262.
  104. ^Ke, Y.; Wu, R.; Zelenitsky, D. K.; Brinkman, D.; Hu, J.; Zhang, S.; Jiang, H.; Han, F. (2021)."A large and unusually thick-shelled turtle egg with embryonic remains from the Upper Cretaceous of China".Proceedings of the Royal Society B: Biological Sciences.288(1957): Article ID 20211239.doi:10.1098/rspb.2021.1239.PMC8370798.PMID34403631.
  105. ^Rule, J. P.; Kool, L.; Parker, W. M. G.; Fitzgerald, E. M. G. (2021). "Turtles all the way down: Neogene pig-nosed turtle fossil from southern Australia reveals cryptic freshwater turtle invasions and extinctions".Papers in Palaeontology.8.doi:10.1002/spp2.1414.S2CID245107305.
  106. ^Georgalis, G. L. (2021). "First pan-trionychid turtle (Testudines, Pan-Trionychidae) from the Palaeogene of Africa".Papers in Palaeontology.7(4): 1919–1926.Bibcode:2021PPal....7.1919G.doi:10.1002/spp2.1372.S2CID237910547.
  107. ^Lichtig, A. J.; Lucas, S. G.; Jasinski, S. E. (2021)."Complete specimens of the Eocene testudinoid turtlesEchmatemysandHadrianusand the North American origin of tortoises ".New Mexico Museum of Natural History and Science Bulletin.82:161–174.
  108. ^Ascarrunz, E.; Claude, J.; Joyce, W. G. (2021)."The phylogenetic relationships of geoemydid turtles from the Eocene Messel Pit Quarry: a first assessment using methods for continuous and discrete characters".PeerJ.9:e11805.doi:10.7717/peerj.11805.PMC8349520.PMID34430073.
  109. ^Adrian, B.; Smith, H. F.; Hutchison, J. H.; Townsend, K. E. B. (2021). "Geometric morphometrics and anatomical network analyses reveal ecospace partitioning among geoemydid turtles from the Uinta Formation, Utah".The Anatomical Record.305(6): 1359–1393.doi:10.1002/ar.24792.PMID34605614.S2CID238257931.
  110. ^Kehlmaier, C.; Albury, N. A.; Steadman, D. W.; Graciá, E.; Franz, R.; Fritz, U. (2021)."Ancient mitogenomics elucidates diversity of extinct West Indian tortoises".Scientific Reports.11(1): Article number 3224.Bibcode:2021NatSR..11.3224K.doi:10.1038/s41598-021-82299-w.PMC7873039.PMID33564028.
  111. ^Kehlmaier, C.; López-Jurado, L. F.; Hernández-Acosta, N.; Mateo-Miras, A.; Fritz, U. (2021).""Ancient DNA" reveals that the scientific name for an extinct tortoise from Cape Verde refers to an extant South American species ".Scientific Reports.11(1): Article number 17537.Bibcode:2021NatSR..1117537K.doi:10.1038/s41598-021-97064-2.PMC8413269.PMID34475454.
  112. ^Abu El-Kheir, G.A.-M.; AbdelGawad, M. K.; Kassab, O. (2021)."First known gigantic sea turtle from the Maastrichtian deposits in Egypt".Acta Palaeontologica Polonica.66(2): 349–355.doi:10.4202/app.00849.2020.
  113. ^Ullmann, S. G.; Carr, E. (2021). "CatapleuraCope, 1870 isEuclastesCope, 1867 (Testudines: Pan-Cheloniidae): synonymy revealed by a new specimen from New Jersey ".Journal of Systematic Palaeontology.19(7): 491–517.Bibcode:2021JSPal..19..491U.doi:10.1080/14772019.2021.1928306.S2CID236504236.
  114. ^De La Garza, R. G.; Madsen, H.; Eriksson, M. E.; Lindgren, J. (2021)."A fossil sea turtle (Reptilia, Pan-Cheloniidae) with preserved soft tissues from the Eocene Fur Formation of Denmark".Journal of Vertebrate Paleontology.41(3): e1938590.Bibcode:2021JVPal..41E8590G.doi:10.1080/02724634.2021.1938590.
  115. ^Ezcurra, M. D.; Bandyopadhyay, S.; Gower, D. J. (2021)."A new erythrosuchid archosauriform from the Middle Triassic Yerrapalli Formation of south-central India".Ameghiniana.58(2): 132–168.doi:10.5710/AMGH.18.01.2021.3416.S2CID234217303.
  116. ^Dalla Vecchia, F. M. (2021)."Heteropelta boboin. gen., n. sp. an armored archosauriform (Reptilia: Archosauromorpha) from the Middle Triassic of Italy ".PeerJ.9:e12468.doi:10.7717/peerj.12468.PMC8601055.PMID34820195.
  117. ^Yáñez, I.; Pol, D.; Leardi, J. M.; Alcober, O. A.; Martínez, R. N. (2021)."An enigmatic new archosauriform from the Carnian– Norian, Upper Triassic, Ischigualasto Formation of northwestern Argentina".Acta Palaeontologica Polonica.66(3): 509–533.doi:10.4202/app.00806.2020.S2CID239239894.
  118. ^Nesbitt, S. J.; Stocker, M. R.; Chatterjee, S.; Horner, J. R.; Goodwin, M. B. (2021)."A remarkable group of thick-headed Triassic Period archosauromorphs with a wide, possibly Pangean distribution".Journal of Anatomy.239(1): 184–206.doi:10.1111/joa.13414.PMC8197959.PMID33660262.S2CID232114890.
  119. ^Heckert, A. B.; Nesbitt, S. J.; Stocker, M. R.; Schneider, V. P.; Hoffman, D. K.; Zimmer, B. W. (2021)."A new short-faced archosauriform from the Upper TriassicPlacerias/Downs' quarry complex, Arizona, USA, expands the morphological diversity of the Triassic archosauriform radiation ".The Science of Nature.108(4): Article 32.Bibcode:2021SciNa.108...32H.doi:10.1007/s00114-021-01733-1.PMC8253714.PMID34213630.
  120. ^Pintore, R.; Houssaye, A.; Nesbitt, S. J.; Hutchinson, J. R. (2021)."Femoral specializations to locomotor habits in early archosauriforms".Journal of Anatomy.240(5): 867–892.doi:10.1111/joa.13598.PMC9005686.PMID34841511.S2CID244752006.
  121. ^Parker, W. G.; Nesbitt, S. J.; Marsh, A. D.; Kligman, B. T.; Bader, K. (2021). "First occurrence ofDoswelliacf.D. kaltenbachi(Archosauriformes) from the Late Triassic (middle Norian) Chinle Formation of Arizona and its implications on proposed biostratigraphic correlations across North America during the Late Triassic ".Journal of Vertebrate Paleontology.41(3): e1976196.Bibcode:2021JVPal..41E6196P.doi:10.1080/02724634.2021.1976196.S2CID243474578.
  122. ^Ponce, S.; Trotteyn, M. J.; Cerda, I. A.; Fiorelli, L. E.; Desojo, J. B. (2021). "Osteohistology and paleobiological inferences of proterochampsids (Eucrocopoda: Proterochampsia) from the Chañares Formation (late Ladinian–early Carnian), La Rioja, Argentina".Journal of Vertebrate Paleontology.41(2): e1926273.Bibcode:2021JVPal..41E6273P.doi:10.1080/02724634.2021.1926273.ISSN0272-4634.S2CID237518073.
  123. ^Heckert, A. B.; Viner, T. C.; Carrano, M. T. (2021)."A large, pathological skeleton ofSmilosuchus gregorii(Archosauriformes: Phytosauria) from the Upper Triassic of Arizona, U.S.A., with discussion of the paleobiological implications of paleopathology in fossil archosauromorphs ".Palaeontologia Electronica.24(2): Article number 24.2.a21.doi:10.26879/1123.
  124. ^Hoffman, D. K.; Miller-Camp, J. A.; Heckert, A. B. (2021)."Tooth enamel microstructure in North American Phytosauria (Diapsida:Archosauriformes): Implications for biogeography and ecology of a Late Triassic clade of crocodylian-like predators".Palaeontologia Electronica.24(3): Article number 24.3.a32.doi:10.26879/1162.
  125. ^Matamales-Andreu, R.; Roig-Munar, F. X.; Oms, O.; Galobart, À.; Fortuny, J. (2021)."A captorhinid-dominated assemblage from the palaeoequatorial Permian of Menorca (Balearic Islands, western Mediterranean)".Earth and Environmental Science Transactions of the Royal Society of Edinburgh.112(2): 125–145.Bibcode:2021EESTR.112..125M.doi:10.1017/S1755691021000268.S2CID237576541.
  126. ^Rowe, D. C. T.; Scott, D. M.; Bevitt, J. J.; Reisz, R. R. (2021)."Multiple Tooth-Rowed Parareptile From the Early Permian of Oklahoma".Frontiers in Earth Science.9:Article 709497.Bibcode:2021FrEaS...9..740R.doi:10.3389/feart.2021.709497.
  127. ^Ezcurra, M. D.; Fiorelli, L. E.; Trotteyn, M. J.; Martinelli, A. G.; Desojo, J. B. (2021). "The rhynchosaur record, including a new stenaulorhynchine taxon, from the Chañares Formation (upper Ladinian–?lowermost Carnian levels) of La Rioja Province, north-western Argentina".Journal of Systematic Palaeontology.18(23): 1907–1938.doi:10.1080/14772019.2020.1856205.S2CID231741583.
  128. ^Cisneros, J. C.; Kammerer, C. F.; Angielczyk, K. D.; Fröbisch, J.; Marsicano, C.; Smith, R. M. H.; Richter, M. (2021)."A new reptile from the lower Permian of Brazil (Karutia fortunatagen. et sp. nov.) and the interrelationships of Parareptilia ".Journal of Systematic Palaeontology.18(23): 1939–1959.doi:10.1080/14772019.2020.1863487.S2CID231741612.
  129. ^Viên mộng, lý đại khánh; YUAN Meng, LI Da-Qing (2021)."A juvenile skull of the longirostrine choristodere (Diapsida:Choristodera), Mengshanosaurus minimus gen. et sp. nov., with comments on neochoristodere ontogeny".Vertebrata PalAsiatica.59(3): 213–228.doi:10.19615/j.cnki.2096-9899.210607.ISSN2096-9899.
  130. ^Chambi-Trowell, S. A. V.; Martinelli, A. G.; Whiteside, D. I.; Romo de Vivar, P. R.; Soares, M. B.; Schultz, C. L.; Gill, P. G.; Benton, M. J.; Rayfield, E. J. (2021)."The diversity of Triassic South American sphenodontians: a new basal form, clevosaurs, and a revision of rhynchocephalian phylogeny".Journal of Systematic Palaeontology.19(11): 787–820.Bibcode:2021JSPal..19..787C.doi:10.1080/14772019.2021.1976292.hdl:1983/af14affc-a26e-426b-83ca-e1833e355882.S2CID240487298.
  131. ^Pinheiro, F. L.; Silva-Neves, E.; Da-Rosa, A. A. (2021). "An early-diverging procolophonid from the lowermost Triassic of South America and the origins of herbivory in Procolophonoidea".Papers in Palaeontology.7(3): 1601–1612.Bibcode:2021PPal....7.1601P.doi:10.1002/spp2.1355.S2CID233797716.
  132. ^Albright, G. M.; Sumida, S. S.; Jung, J. P. (2021). "A New Genus of Captorhinid Reptile (Amniota: Eureptilia) from the Lower Permian Hennessey Formation of Central Oklahoma, and a Consideration of Homoplasy in the Family Captorhinidae".Annals of Carnegie Museum.87(2): 89–116.doi:10.2992/007.087.0201.S2CID237402336.
  133. ^Villa, A.; Montie, R.; Röper, M.; Rothgaenger, M.; Rauhut, O. W. M. (2021)."Sphenofontis velseraegen. et sp. nov., a new rhynchocephalian from the Late Jurassic of Brunn (Solnhofen Archipelago, southern Germany) ".PeerJ.9:e11363.doi:10.7717/peerj.11363.PMC8101455.PMID33987027.
  134. ^Sobral, S.; Sues, H.-D.; Schoch, R. (2021). "A new diapsid with a unique tooth structure from the Middle Triassic (Ladinian) of Germany".Journal of Vertebrate Paleontology.41(2): e1929268.Bibcode:2021JVPal..41E9268S.doi:10.1080/02724634.2021.1929268.S2CID237518053.
  135. ^Martínez, R. N.; Simões, T. R.; Sobral, G.; Apesteguía, S. (2021). "A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles".Nature.597(7875): 235–238.Bibcode:2021Natur.597..235M.doi:10.1038/s41586-021-03834-3.PMID34433961.S2CID237307957.
  136. ^Apesteguía, S.; Garberoglio, F. F.; Gómez, R. O. (2021)."Earliest tuatara (Lepidosauria: Sphenodontinae) from southern continents".Ameghiniana.58(5): 416–441.doi:10.5710/AMGH.13.07.2021.3442.S2CID239053594.
  137. ^Kligman, B. T.; McClure, W. C.; Korbitz, M.; Schumacher, B. A. (2021). "New sphenodontian (Reptilia: Lepidosauria) from a novel Late Triassic paleobiota in western North America sheds light on the earliest radiation of herbivorous lepidosaurs".Journal of Paleontology.95(4): 827–844.Bibcode:2021JPal...95..827K.doi:10.1017/jpa.2021.22.hdl:10919/106674.S2CID233518270.
  138. ^Sues, H.-D.; Kligman, B. T. (2021). "A new lizard-like reptile from the Upper Triassic (Carnian) of Virginia and the Triassic record of Lepidosauromorpha (Diapsida, Sauria)".Journal of Vertebrate Paleontology.40(6): e1879102.doi:10.1080/02724634.2021.1879102.S2CID233805788.
  139. ^Marchetti, L.; Voigt, S.; Buchwitz, M.; MacDougall, M. J.; Lucas, S. G.; Fillmore, D. L.; Stimson, M. R.; King, O. A.; Calder, J. H.; Fröbisch, J. (2021)."Tracking the Origin and Early Evolution of Reptiles".Frontiers in Ecology and Evolution.9:Article 696511.doi:10.3389/fevo.2021.696511.
  140. ^Marchetti, L.; Werneburg, R.; Saber, H.; Voight, S. (2021)."The German record ofNotalacertaBUTTS, 1890 –footprints of the earliest Reptiles ".Semana. Naturwissenschaftliche Veröffentlichungen des Naturhistorischen Museums Schloss Bertholdsburg Schleusingen.36:87–93.
  141. ^Piñeiro, G.; Ferigolo, J.; Mones, A.; Núñez Demarco, P. (2021)."Mesosaur taxonomy reappraisal: areStereosternumandBrazilosaurusvalid taxa? ".Revista Brasileira de Paleontologia.24(3): 205–235.doi:10.4072/rbp.2021.3.04.hdl:11336/175571.ISSN1519-7530.S2CID244188443.
  142. ^Berman, D. S.; Sumida, S. S.; Henrici, A. C.; Scott, D.; Reisz, R. R.; Martens, T. (2021)."The Early Permian BolosauridEudibamus cursoris:Earliest Reptile to Combine Parasagittal Stride and Digitigrade Posture During Quadrupedal and Bipedal Locomotion ".Frontiers in Ecology and Evolution.9:Article 674173.doi:10.3389/fevo.2021.674173.
  143. ^Van den Brandt, M. J.; Rubidge, B. S.; Benoit, J.; Abdala, F. (2021)."Cranial morphology of the middle Permian pareiasaurNochelesaurus alexanderifrom the Karoo Basin of South Africa ".Earth and Environmental Science Transactions of the Royal Society of Edinburgh.112(1): 29–49.Bibcode:2021EESTR.112...29V.doi:10.1017/S1755691021000049.
  144. ^van den Brandt, M. J.; Benoit, J.; Abdala, F.; Rubidge, B. S. (2021). "Postcranial morphology of the South African middle Permian pareiasaurs from the Karoo Basin of South Africa".Palaeontologia Africana.55:1–91.hdl:10539/31290.
  145. ^Cisneros, J. C.; Dentzien-Dias, P.; Francischini, H. (2021)."The Brazilian Pareiasaur Revisited".Frontiers in Ecology and Evolution.9:Article 758802.doi:10.3389/fevo.2021.758802.
  146. ^Romano, M.; Manucci, F.; Rubidge, B.; Van den Brandt, M. J. (2021)."Volumetric Body Mass Estimate andin vivoReconstruction of the Russian PareiasaurScutosaurus karpinskii".Frontiers in Ecology and Evolution.9:Article 692035.doi:10.3389/fevo.2021.692035.hdl:11573/1634310.
  147. ^Logghe, A. J.; Mujal, E.; Marchetti, L.; Nel, A.; Pouillon, J.-M.; Giner, S.; Garrouste, R.; Steyer, J.-S. (2021)."Hyloidichnustrackways with digit and tail drag traces from the Permian of Gonfaron (Var, France): New insights on the locomotion of captorhinomorph eureptiles ".Palaeogeography, Palaeoclimatology, Palaeoecology.573:Article 110436.Bibcode:2021PPP...57310436L.doi:10.1016/j.palaeo.2021.110436.S2CID235530937.
  148. ^Mann, A.; Dudgeon, T. W.; Henrici, A. C.; Berman, D. S.; Pierce, S. E. (2021)."Digit and Ungual Morphology Suggest Adaptations for Scansoriality in the Late Carboniferous EureptileAnthracodromeus longipes".Frontiers in Earth Science.9:Article 675337.Bibcode:2021FrEaS...9..440M.doi:10.3389/feart.2021.675337.
  149. ^Ezcurra, M. D.; Bandyopadhyay, S.; Sen, K. (2021). "A new faunistic component of the Lower Triassic Panchet Formation of India increases the continental non-archosauromorph neodiapsid record in the aftermath of the end-Permian mass extinction".Journal of Paleontology.96(2): 428–438.doi:10.1017/jpa.2021.100.S2CID244517695.
  150. ^Pritchard, A. C.; Sues, H.-D.; Scott, D.; Reisz, R. R. (2021)."Osteology, relationships and functional morphology ofWeigeltisaurus jaekeli(Diapsida, Weigeltisauridae) based on a complete skeleton from the Upper Permian Kupferschiefer of Germany ".PeerJ.9:e11413.doi:10.7717/peerj.11413.PMC8141288.PMID34055483.
  151. ^Buffa, V.; Frey, E.; Steyer, J.-S.; Laurin, M. (2021)."A new cranial reconstruction ofCoelurosauravus elivensisPiveteau, 1926 (Diapsida, Weigeltisauridae) and its implications on the paleoecology of the first gliding vertebrates "(PDF).Journal of Vertebrate Paleontology.41(2): e1930020.Bibcode:2021JVPal..41E0020B.doi:10.1080/02724634.2021.1930020.S2CID237517962.
  152. ^Ford, D. P.; Evans, S. E.; Choiniere, J. N.; Fernandez, V.; Benson, R. B. J. (2021)."A reassessment of the enigmatic diapsidPaliguana whiteiand the early history of Lepidosauromorpha ".Proceedings of the Royal Society B: Biological Sciences.288(1957): Article ID 20211084.doi:10.1098/rspb.2021.1084.PMC8385343.PMID34428965.
  153. ^Griffiths, E. F.; Ford, D. P.; Benson, R. B. J.; Evans, S. E. (2021)."New information on the Jurassic lepidosauromorphMarmoretta oxoniensis"(PDF).Papers in Palaeontology.7(4): 2255–2278.Bibcode:2021PPal....7.2255G.doi:10.1002/spp2.1400.S2CID239140732.
  154. ^Skutschas, P. P.; Sennikov, A. G.; Syromyatnikova, E. V.; Vitenko, D. D.; Parakhin, I. A.; Bapinaev, R. A.; Evans, S. E. (2021)."A lepidosauromorph specimen from the Middle Jurassic (Bathonian) Moskvoretskaya Formation of the Moscow Region, Russia".Historical Biology: An International Journal of Paleobiology.34(3): 566–570.doi:10.1080/08912963.2021.1935921.S2CID236282947.
  155. ^Matsumoto, R.; Hirayama, R.; Miyata, S.; Yoshida, M.; Mitsuzuka, S.; Takisawa, T.; Evans, S. E. (2021)."The first choristoderan record from the Upper Cretaceous of Asia, Tamagawa Formation, Kuji Group, Japan".Cretaceous Research.129:Article 104999.doi:10.1016/j.cretres.2021.104999.ISSN0195-6671.S2CID238680387.
  156. ^Dudgeon, T. W.; Landry, Z.; Callahan, W. R.; Mehling, C. M.; Ballwanz, S. (2021). "An Appalachian population of neochoristoderes (Diapsida, Choristodera) elucidated using fossil evidence and ecological niche modelling".Palaeontology.64(5): 629–643.Bibcode:2021Palgy..64..629D.doi:10.1111/pala.12545.S2CID237761128.
  157. ^Matsumoto, R.; Fujiwara, S.; Evans, S. E. (2021)."Feeding behaviour and functional morphology of the neck in the long-snouted aquatic fossil reptileChampsosaurus(Reptilia: Diapsida) in comparison with the modern crocodilianGavialis gangeticus".Journal of Anatomy.240(5): 893–913.doi:10.1111/joa.13600.PMC9005684.PMID34865223.S2CID244917425.
  158. ^Spiekman, S. N. F.; Fraser, N. C.; Scheyer, T. M. (2021)."A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other" protorosaurs ", and its implications for the early evolution of stem archosaurs".PeerJ.9:e11143.doi:10.7717/peerj.11143.PMC8101476.PMID33986981.
  159. ^Foth, C.; Sookias, R. B.; Ezcurra, M. D. (2021)."Rapid Initial Morphospace Expansion and Delayed Morphological Disparity Peak in the First 100 Million Years of the Archosauromorph Evolutionary Radiation".Frontiers in Earth Science.9:Article 723973.Bibcode:2021FrEaS...9..763F.doi:10.3389/feart.2021.723973.
  160. ^Pradelli, L. A.; Leardi, J. M.; Ezcurra, M. D. (2021). "Body size disparity of the archosauromorph reptiles during the first 90 million years of their evolution".Ameghiniana.59(1): 47–77.doi:10.5710/AMGH.16.09.2021.3441.S2CID240547822.
  161. ^Nesbitt, S. J.; Stocker, M. R.; Ezcurra, M. D.; Fraser, M. C.; Heckert, A. B.; Parker, W. G.; Mueller, B.; Sengupta, S.; Bandyopadhyay, S.; Pritchard, A. C.; Marsh, A. D. (2021)."Widespread azendohsaurids (Archosauromorpha, Allokotosauria) from the Late Triassic of western USA and India".Papers in Palaeontology.8.doi:10.1002/spp2.1413.S2CID245049571.
  162. ^Sues, H.-D.; Ezcurra, M. D.; Schoch, R. R. (2021). "Eifelosaurus triadicusJaekel, 1904, a "forgotten" reptile from the Upper Buntsandstein (Triassic: Anisian) of the Eifel region, Germany ".PalZ.96(2): 275–287.doi:10.1007/s12542-021-00584-5.S2CID244803393.
  163. ^Heinrich, C.; Paes Neto, V. D.; Lacerda, M. B.; Martinelli, A. G.; Fiedler, M. S.; Schultz, C. L. (2021). "The ontogenetic pattern of neurocentral suture closure in the axial skeleton of Hyperodapedontinae (Archosauromorpha, Rhynchosauria) and its evolutionary implications".Palaeontology.64(3): 409–427.Bibcode:2021Palgy..64..409H.doi:10.1111/pala.12528.S2CID233691896.
  164. ^Gentil, A. R.; Ezcurra, M. D. (2021). "Skull osteology of the holotype of the rhynchosaurHyperodapedon sanjuanensis(Sill, 1970) from the Upper Triassic Ischigualasto Formation of Argentina ".The Anatomical Record.305(5): 1168–1200.doi:10.1002/ar.24771.PMID34496139.S2CID237454269.
  165. ^Brocklehurst, N. (2021)."The First Age of Reptiles? Comparing Reptile and Synapsid Diversity, and the Influence of Lagerstätten, During the Carboniferous and Early Permian".Frontiers in Ecology and Evolution.9:Article 669765.doi:10.3389/fevo.2021.669765.
  166. ^Brocklehurst, N.; Benson, R. J. (2021)."Multiple paths to morphological diversification during the origin of amniotes".Nature Ecology & Evolution.5(9): 1243–1249.Bibcode:2021NatEE...5.1243B.doi:10.1038/s41559-021-01516-x.PMID34312521.S2CID236451229.
  167. ^Benoit, J.; Ford, D. P.; Miyamae, J. A.; Ruf, I. (2021)."Can maxillary canal morphology inform varanopid phylogenetic affinities?".Acta Palaeontologica Polonica.66(2): 389–393.doi:10.4202/app.00816.2020.
  168. ^Fischer, V.; Weis, R.; Thuy, B. (2021)."Refining the marine reptile turnover at the Early–Middle Jurassic transition".PeerJ.9:e10647.doi:10.7717/peerj.10647.PMC7906043.PMID33665003.
  169. ^Herrera-Flores, J. A.; Elsler, A.; Stubbs, T. L.; Benton, M. J. (2021)."Slow and fast evolutionary rates in the history of lepidosaurs".Palaeontology.65.doi:10.1111/pala.12579.