Jump to content

8.2-kiloyear event

From Wikipedia, the free encyclopedia
(Redirected from8.2 kiloyear event)
The 8.2 kiloyear event appears as a dent in the warmHoloceneperiod. Evolution of temperatures in the Post-Glacial period following theLast Glacial Maximum(LGM), according toGreenland ice cores.[1]
The warmHoloceneperiod with the 8.2 kiloyear event. Central Greenlandice corereconstructed temperature up to mid-19th century.

Inclimatology,the8.2-kiloyear eventwas asudden decrease in global temperaturesthat occurredapproximately8,200 yearsbefore the present,orc.6,200BC,and which lasted for the next two to fourcenturies.It defines the start of theNorthgrippianage in theHoloceneepoch.The cooling was significantly less pronounced than during theYounger Dryascold period that preceded the beginning of the Holocene. During the event,atmospheric methaneconcentration decreased by 80 ppb, an emission reduction of 15%, by cooling and drying at a hemispheric scale.[2][3]

Identification

[edit]

A rapid cooling around 6200 BC was first identified by Swiss botanistHeinrich Zoller[de]in 1960, who named the event theMisox oscillation(for theVal Mesolcina).[4]It is also known as theFinse eventinNorway.[5]Evidence for the 8.2 ka event has been found inspeleothemrecords across Eurasia, the Mediterranean, South America, and southern Africa and indicates the event was globally synchronous.[6]The strongest evidence for the event comes from theNorth Atlanticregion; the disruption in climate shows clearly inGreenlandice coresand insedimentaryand other records of the temperate and the tropical North Atlantic.[7][8][9]It is less evident in ice cores fromAntarcticaand in South American indices.[10][11]The effects of the sudden temperature decrease were global, however, most notably in changes insea level.

Cooling event

[edit]

The event may have been caused by a largemeltwater pulse,[12]which probably resulted from the final collapse of theLaurentide Ice Sheetof northeastern North America,[13][14][15]most likely when theglacial lakesOjibwayandAgassizsuddenly drained into the North Atlantic Ocean.[16]The same type of action produced theMissoula floodsthat formed theChanneled Scablandsof theColumbia Riverbasin. The meltwater pulse may haveaffectedthe North Atlanticthermohaline circulation,[17][18][19]reducing northward heat transport in the Atlantic and causing significant North Atlantic cooling.[20]TheAtlantic meridional overturning circulation(AMOC) weakened by 55%[14]or 62%.[20]Estimates of the cooling vary and depend somewhat on the interpretation of the proxy data, but decreases of around 1 to 5 °C (1.8 to 9.0 °F) have been reported. In Greenland, the event started at 8175 BP, and the cooling was 3.3 °C (decadal average) in less than 20 years. The coldest period lasted for about 60 years, and its total duration was about 150 years.[2]The meltwater causation hypothesis is, however, considered to be speculation[by whom?]because of inconsistencies with its onset and an unknown region of impact.[citation needed]

Researchers suggest that the discharge was probably superimposed upon a longer episode of cooler climate lasting up to 600 years, and it was merely one contributing factor to the event as a whole.[21]

Further afield from the Laurentide Ice Sheet, some tropical records report a 3 °C (5.4 °F) cooling, based on cores drilled into an ancientcoral reefinIndonesia.[22]The event also caused a global CO2decline of about 25 ppm over about 300 years.[23]However, dating and interpretation of other tropical sites are more ambiguous than the North Atlantic sites. In addition, climate modeling shows that the amount of meltwater and the pathway of meltwater are both important in perturbing the North Atlantic thermohaline circulation.[24]

The initial meltwater pulse caused between 0.5 and 4 m (1 ft 8 in and 13 ft 1 in) ofsea-level rise.Based on estimates of lake volume and decaying ice cap size, values of 0.4–1.2 m (1 ft 4 in – 3 ft 11 in) circulate. Based on sea-level data from the Mississippi Delta, the end of the Lake Agassiz–Ojibway (LAO) drainage occurred at 8.31 to 8.18 ka and ranges from 0.8 to 2.2 m.[25]The sea-level data from the Rhine–Meuse Delta indicate a 2–4 m (6 ft 7 in – 13 ft 1 in) of near-instantaneous rise at 8.54 to 8.2 ka, in addition to 'normal' post-glacial sea-level rise.[26]Meltwater pulse sea-level rise was experienced fully at great distance from the release area. Gravity and rebound effects associated with the shifting of water masses meant that the sea-level fingerprint[colloquialism]was smaller in areas closer to theHudson Bay.TheMississippi Deltarecords around 20%, Northwestern Europe 70% and Asia records 105% of the globally averaged amount.[27]The cooling of the 8.2-kiloyear event was a temporary feature, but the sea-level rise of the meltwater pulse was permanent.

In 2003, theOffice of Net Assessment(ONA) at theUnited States Department of Defensewas commissioned to produce a study on the likely and potential effects of a modern climate change.[28]The study, conducted under ONA headAndrew Marshall,modeled its prospective climate change on the 8.2 ka event, precisely because it was the middle alternative between the Younger Dryas and the milder Little Ice Age.[29]

Effects

[edit]
This is the most prominent temperature fallback (regression) of the Holocene immediately preceding the Atlantic temperature peak.

Across much of the world, the 8.2 ka event engendered drier environmental conditions.[30]Northern Hemisphere monsoon precipitation declined by 12.4% for every °C of global mean temperature change, while Southern Hemisphere monsoon precipitation rose by 4.2%/°C.[31]The 8.2 ka event was also associated with an increase in ocean salinity and terrestrial dust flux.[32]

North Africa and Mesopotamia

[edit]

Drier conditions were notable inNorth Africa;the area around the Charef River in eastern Morocco records an episode of extreme aridity around 8,200 BP.[33]East Africawas significantly affected by five centuries of generaldrought.InWest Asia,especiallyMesopotamia,the 8.2-kiloyear event was a 300-yeararidificationand cooling episode, which may have provided the natural force for Mesopotamian irrigation agriculture and surplus production, which were essential for the earliest formation of classes and urban life.[citation needed]However, changes taking place over centuries around the period are difficult to link specifically to the approximately 100-year abrupt event, as recorded most clearly in the Greenland ice cores.

In particular, inTell Sabi Abyad,Syria, significant cultural changes are observed at c. 6200 BC; the settlement was not abandoned at the time.[34]

Madagascar

[edit]

In northwesternMadagascar,the 8.2 ka event is associated with a negative δ18O excursion andcalcitedeposition, indicating wet, humid conditions caused by the southward migration of the ITCZ.[35]Summer monsoons in the Southern Hemisphere likely became stronger, contributing to precipitation increases.[36]Humidification was two-phased, with an 8.3 kiloyear sub-event preceding the 8.2 kiloyear sub-event by about 20 years.[37]

Europe

[edit]

The sediment core records of theFram Straitshow a short-lived cooling during the 8.2 ka event superimposed on a broader interval of warm climate.[38]In westernScotland,the 8.2 ka event coincided with a dramatic reduction in the Mesolithic population.[39]In the Iberian Peninsula, the 8.2 ka event is linked to greater summer aridity that caused an increase in the frequency of fires and a consequent expansion of fire-resistant evergreen oak trees.[40]

North Asia

[edit]

Lacustrine sediment records show that Western Siberia underwent humidification during the 8.2 ka event.[41]

South Asia

[edit]

Carbonates from Riwasa Palaeolake show a weakening of the Indian Summer Monsoon (ISM) synchronous with the 8.2 ka event.[42]Stalagmites from Kotumsar Cave[43]and from Socotra and Oman further confirm the ISM precipitously diminished in strength.[44]

East Asia

[edit]

A sediment core fromLop Nurin theTarim Basinshows a major dry spell occurred during the 8.2 ka event.[45]The impact of the 8.2 ka event onforestsin theKorean Peninsulawas severe, shown by a sizeable reduction inpollenproduction. It took approximately 400 years for forestecosystemsto recover from the event to their state before the climatic perturbation.[46]

Southeast Asia

[edit]

Evidence from theGulf of Thailandreveals that a sea level drop occurred concordantly with the 8.2 ka event. Also detectable frompalynologicalandsedimentologicalrecords is an increase in runoff.[47]

North America

[edit]

In Greenland, the 8.2 ka event is associated with a large negative spike in ice core δ18O values.[48][49]The waters offCape Hatterasexperienced a majorsalinityincrease.[50]Batguanoδ13C andδDvalues in theGrand Canyondeclined.[51]Southwestern Mexico became significantly drier, evidenced by the interruption of stalagmite growth.[52]In theGulf of Mexico,bay-head deltas back stepped as sea levels rose.[53]Mustang Islandwas breached and ceased to be an effective salinity barrier.[54]Gulf of Mexico δ18Oseawatervalues dropped by 0.8%.[55]

South America

[edit]

The South American Summer Monsoon (SASM) drastically intensified during the 8.2 ka event as revealed by sediment records from Juréia Paleolagoon.[56]

See also

[edit]

References

[edit]
  1. ^Zalloua, Pierre A.; Matisoo-Smith, Elizabeth (6 January 2017)."Mapping Post-Glacial expansions: The Peopling of Southwest Asia".Scientific Reports.7:40338.Bibcode:2017NatSR...740338P.doi:10.1038/srep40338.ISSN2045-2322.PMC5216412.PMID28059138.
  2. ^abKobashi, T.; et al. (2007). "Precise timing and characterization of abrupt climate change 8,200 years ago from air trapped in polar ice".Quaternary Science Reviews.26(9–10): 1212–1222.Bibcode:2007QSRv...26.1212K.CiteSeerX10.1.1.462.9271.doi:10.1016/j.quascirev.2007.01.009.
  3. ^LeGrande, Allegra N. (2009),"The 8,200-Year BP Event",in Gornitz, Vivien (ed.),Encyclopedia of Paleoclimatology and Ancient Environments,Encyclopedia of Earth Sciences Series, Dordrecht: Springer Netherlands, pp. 938–943,doi:10.1007/978-1-4020-4411-3_219,ISBN978-1-4020-4411-3,retrieved2024-03-03
  4. ^Zoller, Heinrich (1960). "Pollenanalytische Untersuchungen zur Vegetationsgeschichte der insubrischen Schweiz".Denkschriften der Schweizerischen Naturforschenden Gesellschaft(in German).83:45–156.ISSN0366-970X.
  5. ^Nesje, Atle; Dahl, Svein Olaf (2001). "The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences".Journal of Quaternary Science.16(2): 155–166.Bibcode:2001JQS....16..155N.doi:10.1002/jqs.567.S2CID130276390.
  6. ^Parker, Sarah E.; Harrison, Sandy P. (22 June 2022)."The timing, duration and magnitude of the 8.2 ka event in global speleothem records".Scientific Reports.12(1): 10542.Bibcode:2022NatSR..1210542P.doi:10.1038/s41598-022-14684-y.PMC9217811.PMID35732793.
  7. ^Alley, R. B.; et al. (1997). "Holocene climatic instability; a prominent, widespread event 8,200 yr ago".Geology.25(6): 483–486.Bibcode:1997Geo....25..483A.doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2.
  8. ^Alley, Richard B.; Ágústsdóttir, Anna Maria (2005)."The 8k event: cause and consequences of a major Holocene abrupt climate change".Quaternary Science Reviews.24(10–11): 1123–1149.Bibcode:2005QSRv...24.1123A.doi:10.1016/j.quascirev.2004.12.004.Retrieved18 September2023.
  9. ^Sarmaja-Korjonen, Kaarina; Seppa, H. (2007). "Abrupt and consistent responses of aquatic and terrestrial ecosystems to the 8200 cal. yr cold event: a lacustrine record from Lake Arapisto, Finland".The Holocene.17(4): 457–467.Bibcode:2007Holoc..17..457S.doi:10.1177/0959683607077020.S2CID129281579.
  10. ^Burroughs, William J., ed. (2003).Climate: Into the 21st Century.Cambridge:Cambridge University Press.ISBN978-0-521-79202-8.
  11. ^Ljung, K.; et al. (2007)."South Atlantic island record reveals a South Atlantic response to the 8.2kyr event".Climate of the Past.4(1): 35–45.doi:10.5194/cp-4-35-2008.
  12. ^You, Defang; Stein, Ruediger; Fahl, Kirsten; Williams, Maricel C.; Schmidt, Daniela N.; McCave, Ian Nicholas; Barker, Stephen; Schefuß, Enno; Niu, Lu; Kuhn, Gerhard; Niessen, Frank (17 March 2023)."Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea".Communications Earth & Environment.4(1): 81.Bibcode:2023ComEE...4...81Y.doi:10.1038/s43247-023-00743-3.ISSN2662-4435.
  13. ^Ellison, Christopher R. W.; Chapman, Mark R.; Hall, Ian R. (2006). "Surface and Deep Ocean Interactions During the Cold Climate Event 8200 Years Ago".Science.312(5782): 1929–1932.Bibcode:2006Sci...312.1929E.doi:10.1126/science.1127213.PMID16809535.S2CID42283806.
  14. ^abMatero, I. S. O.; Gregoire, L. J.; Ivanovic, R. F. (2017)."The 8.2 ka Cooling event caused by Laurentide Ice Saddle Collapse".Earth and Planetary Science Letters.473(5782): 205–214.Bibcode:2017E&PSL.473..205M.doi:10.1016/j.epsl.2017.06.011.
  15. ^Ehlers, Jürgen; Gibbard, Philip L. (2004).Quaternary Glaciations – Extent and Chronology. Part II: North America.Amsterdam, The Netherlands: Elsevier. pp. 257–262.ISBN978-0-444-51592-6.
  16. ^Barber, D. C.; et al. (1999). "Forcing of the cold event 8,200 years ago by catastrophic drainage of Laurentide Lakes".Nature.400(6742): 344–348.Bibcode:1999Natur.400..344B.doi:10.1038/22504.S2CID4426918.
  17. ^Kleiven, Helga (Kikki) Flesche; Kissel, Catherine; Laj, Carlo; Ninnemann, Ulysses S.; Richter, Thomas O.; Cortijo, Elsa (4 January 2008)."Reduced North Atlantic Deep Water Coeval with the Glacial Lake Agassiz Freshwater Outburst".Science.319(5859): 60–64.Bibcode:2008Sci...319...60K.doi:10.1126/science.1148924.ISSN0036-8075.PMID18063758.S2CID38294981.
  18. ^Wiersma, A. P.; Renssen, H. (January 2006)."Model–data comparison for the 8.2kaBP event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes".Quaternary Science Reviews.25(1–2): 63–88.Bibcode:2006QSRv...25...63W.doi:10.1016/j.quascirev.2005.07.009.Retrieved2 September2023.
  19. ^Wanner, H.; Mercolli, L.; Grosjean, M.; Ritz, S. P. (17 October 2014)."Holocene climate variability and change; a data-based review".Journal of the Geological Society.172(2): 254–263.doi:10.1144/jgs2013-101.ISSN0016-7649.S2CID73548216.Retrieved18 September2023.
  20. ^abAguiar, Wilton; Meissner, Katrin J.; Montenegro, Alvaro; Prado, Luciana; Wainer, Ilana; Carlson, Anders E.; Mata, Mauricio M. (9 March 2021)."Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting".Scientific Reports.11(1): 5473.Bibcode:2021NatSR..11.5473A.doi:10.1038/s41598-021-84709-5.PMC7943769.PMID33750824.
  21. ^Rohling, E. J. (2005). "Centennial-scale climate cooling with a sudden event around 8,200 years ago".Nature.434(7036): 975–979.Bibcode:2005Natur.434..975R.doi:10.1038/nature03421.PMID15846336.S2CID4394638.
  22. ^Fagan, Brian (2004).The Long Summer: How Climate Changed Civilization.New York: Basic Books. pp.107–108.ISBN978-0-465-02281-6.
  23. ^Wagner, Friederike; et al. (2002)."Rapid atmospheric CO2changes associated with the 8,200-years-B.P. cooling event ".Proceedings of the National Academy of Sciences of the United States of America.99(19): 12011–12014.Bibcode:2002PNAS...9912011W.doi:10.1073/pnas.182420699.PMC129389.PMID12202744.
  24. ^Li, Yong-Xiang; Renssen, H.; Wiersma, A. P.; Törnqvist, T. E. (28 August 2009)."Investigating the impact of Lake Agassiz drainage routes on the 8.2 ka cold event with a climate model".Climate of the Past.5(3): 471–480.Bibcode:2009CliPa...5..471L.doi:10.5194/cp-5-471-2009.ISSN1814-9332.
  25. ^Li, Yong-Xiang; Törnqvist, Torbjörn E.; Nevitt, Johanna M.; Kohl, Barry (2012). "Synchronizing rapid sea-level rise, final LakeAgassiz drainage, and abrupt cooling 8,200 years ago".Earth and Planetary Science Letters.315–316: 41–50.Bibcode:2012E&PSL.315...41L.doi:10.1016/j.epsl.2011.05.034.
  26. ^Hijma, Marc P.; Cohen, Kim M. (March 2010). "Timing and magnitude of the sea-level jump preluding the 8.2 kiloyear event".Geology.38(3): 275–278.Bibcode:2010Geo....38..275H.doi:10.1130/G30439.1.
  27. ^Kendall, Roblyn A.; Mitrovica, J. X.; Milne, G.A.; Törnqvist, T. E.; Li, Yong-Xiang (May 2008). "The sea-level fingerprint of the 8.2 ka climate event".Geology.36(5): 423–426.Bibcode:2008Geo....36..423K.doi:10.1130/G24550A.1.S2CID36428838.
  28. ^Schwartz, Peter; Randall, Doug (October 2003).An Abrupt Climate Change Scenario and Its Implications for United States National Security.DTIC(Report).
  29. ^Stripp, David (February 9, 2004)."The Pentagon's Weather Nightmare".Fortune.
  30. ^Pratap, Shailendra; Markonis, Yannis (31 May 2022)."The response of the hydrological cycle to temperature changes in recent and distant climatic history".Progress in Earth and Planetary Science.9(1): 30.Bibcode:2022PEPS....9...30P.doi:10.1186/s40645-022-00489-0.ISSN2197-4284.
  31. ^He, Peng; Liu, Jian; Wang, Bin; Sun, Weiyi (15 January 2022)."Understanding global monsoon precipitation changes during the 8.2 ka event and the current warm period".Palaeogeography, Palaeoclimatology, Palaeoecology.586:110757.Bibcode:2022PPP...58610757H.doi:10.1016/j.palaeo.2021.110757.
  32. ^O'Brien, S. R.; Mayewski, P. A.; Meeker, L. D.; Meese, D. A.; Twickler, M. S.; Whitlow, S. I. (22 December 1995)."Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core".Science.270(5244): 1962–1964.Bibcode:1995Sci...270.1962O.doi:10.1126/science.270.5244.1962.ISSN0036-8075.S2CID129199142.Retrieved11 September2023.
  33. ^Depreux, Bruno; Berger, Jean-François; Lefèvre, David; Wackenheim, Quentin; Andrieu-Ponel, Valérie; Vinai, Sylvia; Degeai, Jean-Philippe; El Harradji, Abderrahmane; Boudad, Larbi; Sanz-Laliberté, Séverine; Michel, Kristel; Limondin-Lozouet, Nicole (12 May 2022)."First fluvial archive of the 8.2 and 7.6–7.3 ka events in North Africa (Charef River, High Plateaus, NE Morocco)".Scientific Reports.12(1): 7710.Bibcode:2022NatSR..12.7710D.doi:10.1038/s41598-022-11353-y.PMC9095645.PMID35562177.
  34. ^van der Plicht, J.; Akkermans, P. G.; Nieuwenhuyse, O.; Kaneda, A.; Russell, A. (2011)."Tell Sabi Abyad, Syria: Radiocarbon Chronology, Cultural Change, and the 8.2 ka Event".Radiocarbon.53(2): 229–243.Bibcode:2011Radcb..53..229V.doi:10.1017/S0033822200056514.
  35. ^Duan, Pengzhen; Li, Hanying; Sinha, Ashish; Voarintsoa, Ny Riavo Gilbertinie; Kathayat, Gayatri; Hu, Peng; Zhang, Haiwei; Ning, Youfeng; Cheng, Hai (15 September 2021)."The timing and structure of the 8.2 ka event revealed through high-resolution speleothem records from northwestern Madagascar".Quaternary Science Reviews.268:107104.Bibcode:2021QSRv..26807104D.doi:10.1016/j.quascirev.2021.107104.Retrieved2 September2023.
  36. ^Voarintsoa, Ny Riavo Gilbertinie (Spring 2017). "4".Investigating stalagmites from NE Namibia and NW Madagascar as a key to better understand local paleoenvironmental changes and implications for inter-tropical convergence zone (itcz) dynamics(PhD).University of Georgia.Retrieved2 September2023.
  37. ^Voarintsoa, Ny Riavo Gilbertinie; Matero, Ilkka S.O.; Railsback, L. Bruce; Gregoire, Lauren J.; Tindall, Julia; Sime, Louise; Cheng, Hai; Edwards, R. Lawrence; Brook, George A.; Kathayat, Gayatri; Li, Xianglei; Michel Rakotondrazafy, Amos Fety; Madison Razanatseheno, Marie Olga (15 January 2019)."Investigating the 8.2 ka event in northwestern Madagascar: Insight from data–model comparisons".Quaternary Science Reviews.204:172–186.Bibcode:2019QSRv..204..172V.doi:10.1016/j.quascirev.2018.11.030.S2CID135225331.Retrieved2 September2023.
  38. ^Werner, Kirstin; Spielhagen, Robert F.; Bauch, Dorothea; Hass, H. Christian; Kandiano, Evgeniya (28 March 2013)."Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene: HOLOCENE IN EASTERN FRAM STRAIT".Paleoceanography and Paleoclimatology.28(2): 283–295.doi:10.1002/palo.20028.Retrieved2 September2023.
  39. ^Wicks, Karen; Mithen, Steven (2014). "The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: a Bayesian chronological analysis using 'activity events' as a population proxy".Journal of Archaeological Science.45.Elsevier BV: 240–269.Bibcode:2014JArSc..45..240W.doi:10.1016/j.jas.2014.02.003.ISSN0305-4403.
  40. ^Davis, Basil A. S.; Stevenson, Anthony C. (10 April 2007)."The 8.2ka event and Early–Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain".Quaternary Science Reviews.26(13): 1695–1712.Bibcode:2007QSRv...26.1695D.doi:10.1016/j.quascirev.2007.04.007.ISSN0277-3791.Retrieved18 September2023.
  41. ^Ryabogina, Natalia E.; Afonin, Alexey S.; Ivanov, Sergey N.; Li, Hong-Chun; Kalinin, Pavel A.; Udaltsov, Sergey N.; Nikolaenko, Svetlana A. (10 September 2019)."Holocene paleoenvironmental changes reflected in peat and lake sediment records of Western Siberia: Geochemical and plant macrofossil proxies".Quaternary International.528:73–87.Bibcode:2019QuInt.528...73R.doi:10.1016/j.quaint.2019.04.006.S2CID146146964.Retrieved2 September2023.
  42. ^Dixit, Yama; Hodell, David A.; Sinha, Rajiv; Petrie, Cameron A. (1 April 2014)."Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P."Earth and Planetary Science Letters.391:16–23.Bibcode:2014E&PSL.391...16D.doi:10.1016/j.epsl.2014.01.026.ISSN0012-821X.Retrieved10 September2023.
  43. ^Band, Shraddha; Yadava, M. G.; Lone, Mahjoor Ahmad; Shen, Chuan-Chou; Sree, Kaushik; Ramesh, R. (20 June 2018)."High-resolution mid-Holocene Indian Summer Monsoon recorded in a stalagmite from the Kotumsar Cave, Central India".Quaternary International.479:19–24.Bibcode:2018QuInt.479...19B.doi:10.1016/j.quaint.2018.01.026.Retrieved2 September2023.
  44. ^Fleitmann, Dominik; Burns, Stephen J.; Mangini, Augusto; Mudelsee, Manfred; Kramers, Jan; Villa, Igor; Neff, Ulrich; Al-Subbary, Abdulkarim A.; Buettner, Annett; Hippler, Dorothea; Matter, Albert (1 January 2007)."Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)".Quaternary Science Reviews.26(1): 170–188.Bibcode:2007QSRv...26..170F.doi:10.1016/j.quascirev.2006.04.012.ISSN0277-3791.Retrieved10 September2023.
  45. ^Wang, Jingzhong; Jia, Hongjuan (29 September 2016)."Sediment record of environmental change at Lake Lop Nur (Xinjiang, NW China) from 13.0 to 5.6 cal ka BP".Chinese Journal of Oceanology and Limnology.35(5): 1070–1078.doi:10.1007/s00343-017-6079-4.ISSN0254-4059.S2CID133423910.Retrieved2 September2023.
  46. ^Park, Jungjae; Park, Jinheum; Yi, Sangheon; Kim, Jin Cheul; Lee, Eunmi; Choi, Jieun (25 July 2019)."Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean peninsula".Scientific Reports.9(1): 10806.Bibcode:2019NatSR...910806P.doi:10.1038/s41598-019-47264-8.PMC6658530.PMID31346228.S2CID256996341.
  47. ^Chabangborn, Akkaneewut; Punwong, Paramita; Phountong, Karn; Nudnara, Worakamon; Yoojam, Noppadon; Sainakum, Assuma; Won-In, Krit; Sompongchaiyakul, Penjai (20 January 2020)."Environmental changes on the west coast of the Gulf of Thailand during the 8.2 ka event".Quaternary International.536:103–113.Bibcode:2020QuInt.536..103C.doi:10.1016/j.quaint.2019.12.020.S2CID214310640.Retrieved2 September2023.
  48. ^Masson-Delmotte, V.; Landais, A.; Stievenard, M.; Cattani, O.; Falourd, S.; Jouzel, J.; Johnsen, S. J.; Dahl-Jensen, D.; Sveinsbjornsdottir, A.; White, J. W. C.; Popp, T.; Fischer, H. (20 July 2005)."Holocene climatic changes in Greenland: Different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP: GREENLAND HOLOCENE DEUTERIUM EXCESS".Journal of Geophysical Research: Atmospheres.110(D14): 1–13.doi:10.1029/2004JD005575.
  49. ^Rasmussen, S. O.; Vinther, B. M.; Clausen, H. B.; Andersen, K. K. (1 August 2008)."Early Holocene climate oscillations recorded in three Greenland ice cores".Quaternary Science Reviews.Early Holocene climate oscillations - causes and consequences.26(15): 1907–1914.doi:10.1016/j.quascirev.2007.06.015.ISSN0277-3791.S2CID218535658.
  50. ^Cléroux, Caroline; Debret, Maxime; Cortijo, Elsa; Duplessy, Jean-Claude; Dewilde, Fabien; Reijmer, John; Massei, Nicolas (9 February 2012)."High-resolution sea surface reconstructions off Cape Hatteras over the last 10 ka: OFF CAPE HATTERAS VARIABILITY, 10 KA".Paleoceanography and Paleoclimatology.27(1): 1–14.doi:10.1029/2011PA002184.S2CID14736021.Retrieved10 September2023.
  51. ^Wurster, Christopher M.; Patterson, William P.; McFarlane, Donald A.; Wassenaar, Leonard I.; Hobson, Keith A.; Athfield, Nancy Beavan; Bird, Michael I. (1 September 2008)."Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events".Geology.36(9): 683.Bibcode:2008Geo....36..683W.doi:10.1130/G24938A.1.ISSN0091-7613.Retrieved2 September2023.
  52. ^Bernal, Juan Pablo; Lachniet, Matthew; McCulloch, Malcolm; Mortimer, Graham; Morales, Pedro; Cienfuegos, Edith (January 2011)."A speleothem record of Holocene climate variability from southwestern Mexico".Quaternary Research.75(1): 104–113.Bibcode:2011QuRes..75..104B.doi:10.1016/j.yqres.2010.09.002.ISSN0033-5894.S2CID128740037.Retrieved2 September2023.
  53. ^Rodriguez, Antonio B.; Simms, Alexander R.; Anderson, John B. (December 2010)."Bay-head deltas across the northern Gulf of Mexico back step in response to the 8.2ka cooling event".Quaternary Science Reviews.29(27–28): 3983–3993.Bibcode:2010QSRv...29.3983R.doi:10.1016/j.quascirev.2010.10.004.
  54. ^Ferguson, Shannon; Warny, Sophie; Anderson, John B; Simms, Alexander R; White, Crawford (7 July 2017)."Breaching of Mustang Island in response to the 8.2 ka sea-level event and impact on Corpus Christi Bay, Gulf of Mexico: Implications for future coastal change".The Holocene.28(1): 166–172.doi:10.1177/0959683617715697.ISSN0959-6836.
  55. ^LoDico, Jenna M.; Flower, Benjamin P.; Quinn, Terrence M. (29 September 2006)."Subcentennial-scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene: HOLOCENE CLIMATE CHANGE".Paleoceanography and Paleoclimatology.21(3): 1–9.doi:10.1029/2005PA001243.S2CID13816000.
  56. ^Sallun, Alethéa E. M.; Filho, William Sallun; Suguio, Kenitiro; Babinski, Marly; Gioia, Simone M. C. L.; Harlow, Benjamin A.; Duleba, Wania; Oliveira, Paulo E. De; Garcia, Maria Judite; Weber, Cinthia Z.; Christofoletti, Sérgio R.; Santos, Camilla da S.; Medeiros, Vanda B. de; Silva, Juliana B.; Santiago-Hussein, Maria Cristina (20 January 2017)."Geochemical evidence of the 8.2 ka event and other Holocene environmental changes recorded in paleolagoon sediments, southeastern Brazil".Quaternary Research.77(1): 31–43.doi:10.1016/j.yqres.2011.09.007.ISSN0033-5894.S2CID129641081.Retrieved10 September2023.
[edit]