Jump to content

Geologic time scale

From Wikipedia, the free encyclopedia
(Redirected fromAge (geology))

Geologic time scale proportionally represented as a log-spiral. The image also shows some notable events in Earth's history and the general evolution of life.
The geologic time scale, proportionally represented as alog-spiralwith some major events in Earth's history. Amegaannus(Ma) represents one million (106) years.

Thegeologic time scaleorgeological time scale(GTS) is a representation oftimebased on therock recordofEarth.It is a system ofchronological datingthat useschronostratigraphy(the process of relatingstratato time) andgeochronology(a scientific branch ofgeologythat aims to determine the age of rocks). It is used primarily byEarth scientists(includinggeologists,paleontologists,geophysicists,geochemists,andpaleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such aslithologies,paleomagneticproperties, andfossils.The definition of standardised international units of geologic time is the responsibility of theInternational Commission on Stratigraphy(ICS), a constituent body of theInternational Union of Geological Sciences(IUGS), whose primary objective[1]is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC)[2]that are used to define divisions of geologic time. The chronostratigraphic divisions are in turn used to define geochronologic units.[2]

While some regional terms are still in use,[3]the table of geologic time conforms to thenomenclature,ages, and colour codes set forth by the ICS.[1][4]

Principles[edit]

The geologic time scale is a way of representingdeep timebased on events that have occurred throughoutEarth's history,a time span of about4.54 ± 0.05 Ga(4.54 billion years).[5]It chronologically organises strata, and subsequently time, by observing fundamental changes in stratigraphy that correspond to major geological or paleontological events. For example, theCretaceous–Paleogene extinction event,marks the lower boundary of thePaleogeneSystem/Period and thus the boundary between theCretaceousand Paleogene systems/periods. For divisions prior to theCryogenian,arbitrary numeric boundary definitions (Global Standard Stratigraphic Ages,GSSAs) are used to divide geologic time. Proposals have been made to better reconcile these divisions with the rock record.[6][3]

Historically, regional geologic time scales were used[3]due to the litho- and biostratigraphic differences around the world in time equivalent rocks. The ICS has long worked to reconcile conflicting terminology by standardising globally significant and identifiable stratigraphichorizonsthat can be used to define the lower boundaries of chronostratigraphic units. Defining chronostratigraphic units in such a manner allows for the use of global, standardised nomenclature. The ICC represents this ongoing effort.

The relative relationships of rocks for determining their chronostratigraphic positions use the overriding principles of:[7][8][9][10]

  • Superposition– Newer rock beds will lie on top of older rock beds unless the succession has been overturned.
  • Horizontality– All rock layers were originally deposited horizontally.[note 1]
  • Lateral continuity– Originally deposited layers of rock extend laterally in all directions until either thinning out or being cut off by a different rock layer.
  • Biologic succession (where applicable) – This states that each stratum in a succession contains a distinctive set of fossils. This allows for a correlation of the stratum even when the horizon between them is not continuous.
  • Cross-cutting relationships– A rock feature that cuts across another feature must be younger than the rock it cuts across.
  • Inclusion– Small fragments of one type of rock but embedded in a second type of rock must have formed first, and were included when the second rock was forming.
  • Relationships ofunconformities– Geologic features representing periods of erosion or non-deposition, indicating non-continuous sediment deposition.

Terminology[edit]

The GTS is divided into chronostratigraphic units and their corresponding geochronologic units. These are represented on the ICC published by the ICS; however, regional terms are still in use in some areas.

Chronostratigraphyis the element ofstratigraphythat deals with the relation between rock bodies and the relative measurement of geological time.[11]It is the process where distinct strata between defined stratigraphic horizons are assigned to represent a relative interval of geologic time.

Achronostratigraphic unitis a body of rock, layered or unlayered, that is defined between specified stratigraphic horizons which represent specified intervals of geologic time. They include all rocks representative of a specific interval of geologic time, and only this time span.[11] Eonothem, erathem, system, series, subseries, stage, and substage are the hierarchical chronostratigraphic units.[11] Geochronologyis the scientific branch of geology that aims to determine the age of rocks, fossils, and sediments either through absolute (e.g.,radiometric dating) or relative means (e.g.,stratigraphic position,paleomagnetism,stable isotope ratios).[12]

Ageochronologic unitis a subdivision of geologic time. It is a numeric representation of an intangible property (time).[12]Eon, era, period, epoch, subepoch, age, and subage are the hierarchical geochronologic units.[11]Geochronometryis the field of geochronology that numerically quantifies geologic time.[12]

AGlobal Boundary Stratotype Section and Point(GSSP) is an internationally agreed upon reference point on astratigraphic sectionwhich defines the lower boundaries of stages on the geologic time scale.[13](Recently this has been used to define the base of a system)[14]

AGlobal Standard Stratigraphic Age(GSSA)[15]is a numeric only, chronologic reference point used to define the base of geochronologic units prior to the Cryogenian. These points are arbitrarily defined.[11]They are used where GSSPs have not yet been established. Research is ongoing to define GSSPs for the base of all units that are currently defined by GSSAs.

The numeric (geochronometric) representation of a geochronologic unit can, and is more often subject to change when geochronology refines the geochronometry, while the equivalent chronostratigraphic unit remains the same, and their revision is less common. For example, in early 2022 the boundary between theEdiacaranandCambrianperiods(geochronologic units) was revised from 541 Ma to 538.8 Ma but the rock definition of the boundary (GSSP) at the base of the Cambrian, and thus the boundary between the Ediacaran and Cambriansystems(chronostratigraphic units) has not changed, merely the geochronometry has been refined.

The numeric values on the ICC are represented by the unitMa(megaannum) 'millionyears', i.e., 201.4 ± 0.2 Ma, the lower boundary of theJurassicPeriod, is defined as 201,400,000 years old with an uncertainty of 200,000 years. OtherSI prefixunits commonly used by geologists areGa(gigaannum, billion years), andka(kiloannum, thousand years), with the latter often represented in calibrated units (before present).

Divisions of geologic time[edit]

TheEarlyandLatesubdivisions are used as the geochronologic equivalents of the chronostratigraphicLowerandUpper,e.g., EarlyTriassicPeriod (geochronologic unit) is used in place of Lower Triassic Series (chronostratigraphic unit).

Rocks representing a given chronostratigraphic unit are that chronostratigraphic unit, and the time they were laid down in is the geochronologic unit, i.e., the rocks that represent theSilurianSeriesarethe Silurian Series and they were depositedduringthe Silurian Period.

Formal, hierarchical units of the geologic time scale (largest to smallest)
Chronostratigraphic unit (strata) Geochronologic unit (time) Time span[note 2]
Eonothem Eon Several hundred million years to two billion years
Erathem Era Tens to hundreds of millions of years
System Period Millions of years to tens of millions of years
Series Epoch Hundreds of thousands of years to tens of millions of years
Subseries Subepoch Thousands of years to millions of years
Stage Age Thousands of years to millions of years

Naming of geologic time[edit]

The names of geologic time units are defined for chronostratigraphic units with the corresponding geochronologic unit sharing the same name with a change to the latter (e.g. PhanerozoicEonothembecomes the Phanerozoic Eon). Names of erathems in the Phanerozoic were chosen to reflect major changes in the history of life on Earth:Paleozoic(old life),Mesozoic(middle life), andCenozoic(new life). Names of systems are diverse in origin, with some indicating chronologic position (e.g., Paleogene), while others are named forlithology(e.g., Cretaceous),geography(e.g.,Permian), or are tribal (e.g.,Ordovician) in origin. Most currently recognised series and subseries are named for their position within a system/series (early/middle/late); however, the ICS advocates for all new series and subseries to be named for a geographic feature in the vicinity of itsstratotypeortype locality.The name of stages should also be derived from a geographic feature in the locality of its stratotype or type locality.[11]

Informally, the time before the Cambrian is often referred to as thePrecambrianor pre-Cambrian (Supereon).[6][note 3]

Time span andetymologyofICSeonothem/eon names
Name Time span Duration (million years) Etymology of name
Phanerozoic 538.8 to 0million years ago 538.8 From Greek φανερός (phanerós) 'visible' or 'abundant' and ζωή (zoē) 'life'.
Proterozoic 2,500 to 538.8million years ago 1961.2 From Greek πρότερος (próteros) 'former' or 'earlier' and ζωή (zoē) 'life'.
Archean 4,031 to 2,500million years ago 1531 From Greekἀρχή(archē) 'beginning, origin'.
Hadean 4,567.3 to 4,031million years ago 536.3 FromHades,Greek:ᾍδης,translit.Háidēs,the god of the underworld (hell, the inferno) in Greek mythology.
Time span and etymology of ICS erathem/era names
Name Time span Duration (million years) Etymology of name
Cenozoic 66 to 0million years ago 66 From Greek καινός (kainós) 'new' and ζωή (zōḗ) 'life'.
Mesozoic 251.9 to 66million years ago 185.902 From Greek μέσο (méso) 'middle' and ζωή (zōḗ) 'life'.
Paleozoic 538.8 to 251.9million years ago 286.898 From Greek παλιός (palaiós) 'old' and ζωή (zōḗ) 'life'.
Neoproterozoic 1,000 to 538.8million years ago 461.2 From Greek νέος (néos) 'new' or 'young', πρότερος (próteros) 'former' or 'earlier', and ζωή (zōḗ) 'life'.
Mesoproterozoic 1,600 to 1,000million years ago 600 From Greek μέσο (méso) 'middle', πρότερος (próteros) 'former' or 'earlier', and ζωή (zōḗ) 'life'.
Paleoproterozoic 2,500 to 1,600million years ago 900 From Greek παλιός (palaiós) 'old', πρότερος (próteros) 'former' or 'earlier', and ζωή (zōḗ) 'life'.
Neoarchean 2,800 to 2,500million years ago 300 From Greek νέος (néos) 'new' or 'young' and ἀρχαῖος (arkhaîos) 'ancient'.
Mesoarchean 3,200 to 2,800million years ago 400 From Greek μέσο (méso) 'middle' and ἀρχαῖος (arkhaîos) 'ancient'.
Paleoarchean 3,600 to 3,200million years ago 400 From Greek παλιός (palaiós) 'old' and ἀρχαῖος (arkhaîos) 'ancient'.
Eoarchean 4,031 to 3,600million years ago 431 From Greek ἠώς (ēōs) 'dawn' and ἀρχαῖος (arkhaîos) 'ancient'.
Time span and etymology of ICS system/period names
Name Time span Duration (million years) Etymology of name
Quaternary 2.6 to 0million years ago 2.58 First introduced byJules Desnoyersin 1829 for sediments inFrance'sSeineBasin that appeared to be younger thanTertiary[note 4]rocks.[20]
Neogene 23 to 2.6million years ago 20.45 Derived from Greek νέος (néos) 'new' and γενεά (geneá) 'genesis' or 'birth'.
Paleogene 66 to 23million years ago 42.97 Derived from Greek παλιός (palaiós) 'old' and γενεά (geneá) 'genesis' or 'birth'.
Cretaceous ~145 to 66million years ago ~79 Derived fromTerrain Crétacéused in 1822 byJean d'Omalius d'Halloyin reference to extensive beds ofchalkwithin theParis Basin.[21]Ultimately derived fromLatincrēta'chalk'.
Jurassic 201.4 to 145million years ago ~56.4 Named after theJura Mountains.Originally used byAlexander von Humboldtas 'Jura Kalkstein' (Jura limestone) in 1799.[22]Alexandre Brongniartwas the first to publish the term Jurassic in 1829.[23][24]
Triassic 251.9 to 201.4million years ago 50.502 From theTriasofFriedrich August von Albertiin reference to a trio of formations widespread in southernGermany
Permian 298.9 to 251.9million years ago 46.998 Named after the historical region ofPerm,Russian Empire.[25]
Carboniferous 358.9 to 298.9million years ago 60 Means 'coal-bearing', from theLatincarbō (coal) and ferō (to bear, carry).[26]
Devonian 419.2 to 358.9million years ago 60.3 Named afterDevon,England.[27]
Silurian 443.8 to 419.2million years ago 24.6 Named after theCeltictribe, theSilures.[28]
Ordovician 485.4 to 443.8million years ago 41.6 Named after the Celtic tribe,Ordovices.[29][30]
Cambrian 538.8 to 485.4million years ago 53.4 Named forCambria,alatinisedform of the Welsh name forWales,Cymru.[31]
Ediacaran 635 to 538.8million years ago ~96.2 Named for theEdiacara Hills.Ediacara is possibly a corruption ofKuyani'Yata Takarra' 'hard or stony ground'.[32][33]
Cryogenian 720 to 635million years ago ~85 From Greek κρύος (krýos) 'cold' and γένεσις (génesis) 'birth'.[3]
Tonian 1,000 to 720million years ago ~280 From Greek τόνος (tónos) 'stretch'.[3]
Stenian 1,200 to 1,000million years ago 200 From Greek στενός (stenós) 'narrow'.[3]
Ectasian 1,400 to 1,200million years ago 200 From Greek ἔκτᾰσῐς (éktasis) 'extension'.[3]
Calymmian 1,600 to 1,400million years ago 200 From Greek κάλυμμᾰ (kálumma) 'cover'.[3]
Statherian 1,800 to 1,600million years ago 200 From Greek σταθερός (statherós) 'stable'.[3]
Orosirian 2,050 to 1,800million years ago 250 From Greek ὀροσειρά (oroseirá) 'mountain range'.[3]
Rhyacian 2,300 to 2,050million years ago 250 From Greek ῥύαξ (rhýax) 'stream of lava'.[3]
Siderian 2,500 to 2,300million years ago 200 From Greek σίδηρος (sídēros) 'iron'.[3]
Time span and etymology of ICS series/epoch names
Name Time span Duration (million years) Etymology of name
Holocene 0.012 to 0million years ago 0.0117 From Greek ὅλος (hólos) 'whole' and καινός (kainós) 'new'
Pleistocene 2.58 to 0.012million years ago 2.5683 Coined in the early 1830s from Greek πλεῖστος (pleîstos) 'most' and καινός (kainós) 'new'
Pliocene 5.33 to 2.58million years ago 2.753 Coined in the early 1830s from Greek πλείων (pleíōn) 'more' and καινός (kainós) 'new'
Miocene 23.03 to 5.33million years ago 17.697 Coined in the early 1830s from Greek μείων (meíōn) 'less' and καινός (kainós) 'new'
Oligocene 33.9 to 23.03million years ago 10.87 Coined in the 1850s from Greek ὀλίγος (olígos) 'few' and καινός (kainós) 'new'
Eocene 56 to 33.9million years ago 22.1 Coined in the early 1830s from Greek ἠώς (ēōs) 'dawn' and καινός (kainós) 'new', referring to the dawn of modern life during this epoch
Paleocene 66 to 56million years ago 10 Coined byWilhelm Philippe Schimperin 1874 as a portmanteau of paleo- + Eocene, but on the surface from Greek παλαιός (palaios) 'old' and καινός (kainós) 'new'
Upper Cretaceous 100.5 to 66million years ago 34.5 SeeCretaceous
Lower Cretaceous 145 to 100.5million years ago 44.5
Upper Jurassic
161.5 to 145million years ago 16.5 SeeJurassic
Middle Jurassic 174.7 to 161.5million years ago 13.2
Lower Jurassic
201.4 to 174.7million years ago 26.7
Upper Triassic 237 to 201.4million years ago 35.6 SeeTriassic
Middle Triassic
247.2 to 237million years ago 10.2
Lower Triassic 251.9 to 247.2million years ago 4.702
Lopingian 259.51 to 251.9million years ago 7.608 Named forLoping,China, an anglicization of Mandarin nhạc bình (lèpíng) 'peaceful music'
Guadalupian 273.01 to 259.51million years ago 13.5 Named for theGuadalupe Mountainsof the American Southwest, ultimately from Arabic وَادِي ٱل (wādī al) 'valley of the' and Latinlupus'wolf' via Spanish
Cisuralian 298.9 to 273.01million years ago 25.89 From Latincis-(before) + Russian Урал (Ural), referring to the western slopes of theUral Mountains
Upper Pennsylvanian 307 to 298.9million years ago 8.1 Named for the US state ofPennsylvania,fromWilliam Penn+ Latinsilvanus(forest) + -ia by analogy to Transylvania
Middle Pennsylvanian 315.2 to 307million years ago 8.2
Lower Pennsylvanian 323.2 to 315.2million years ago 8
Upper Mississippian 330.9 to 323.2million years ago 7.7 Named for theMississippi River,from Ojibwe ᒥᐦᓯᓰᐱ (misi-ziibi) 'great river'
Middle Mississippian 346.7 to 330.9million years ago 15.8
Lower Mississippian 358.9 to 346.7million years ago 12.2
Upper Devonian 382.7 to 358.9million years ago 23.8 SeeDevonian
Middle Devonian 393.3 to 382.7million years ago 10.6
Lower Devonian 419.2 to 393.3million years ago 25.9
Pridoli 423 to 419.2million years ago 3.8 Named for the Homolka a Přídolí nature reserve nearPrague,Czechia
Ludlow 427.4 to 423million years ago 4.4 Named afterLudlow,England
Wenlock 433.4 to 427.4million years ago 6 Named for theWenlock EdgeinShropshire,England
Llandovery 443.8 to 433.4million years ago 10.4 Named afterLlandovery,Wales
Upper Ordovician 458.4 to 443.8million years ago 14.6 SeeOrdovician
Middle Ordovician 470 to 458.4million years ago 11.6
Lower Ordovician 485.4 to 470million years ago 15.4
Furongian 497 to 485.4million years ago 11.6 From Mandarin phù dung (fúróng) 'lotus', referring to the state symbol ofHunan
Miaolingian 509 to 497million years ago 12 Named for theMiao Ling[zh]mountains ofGuizhou,Mandarin for 'sprouting peaks'
Cambrian Series 2(informal) 521 to 509million years ago 12 SeeCambrian
Terreneuvian 538.8 to 521million years ago 17.8 Named forTerre-Neuve,a FrenchcalqueofNewfoundland

History of the geologic time scale[edit]

Early history[edit]

While a modern geological time scale was not formulated until 1911[34]byArthur Holmes,the broader concept that rocks and time are related can be traced back to (at least) thephilosophersofAncient Greece.Xenophanes of Colophon(c. 570–487BCE) observed rock beds with fossils of shells located above the sea-level, viewed them as once living organisms, and used this to imply an unstable relationship in which the sea had at timestransgressedover the land and at other times hadregressed.[35]This view was shared by a few of Xenophanes' contemporaries and those that followed, includingAristotle(384–322 BCE) who (with additional observations) reasoned that the positions of land and sea had changed over long periods of time. The concept ofdeep timewas also recognised byChinese naturalistShen Kuo[36](1031–1095) andIslamicscientist-philosophers, notably theBrothers of Purity,who wrote on the processes of stratification over the passage of time in theirtreatises.[35]Their work likely inspired that of the 11th-centuryPersianpolymathAvicenna(Ibn Sînâ, 980–1037) who wrote inThe Book of Healing(1027) on the concept of stratification and superposition, pre-datingNicolas Stenoby more than six centuries.[35]Avicenna also recognised fossils as "petrifications of the bodies of plants and animals",[37]with the 13th-centuryDominicanbishopAlbertus Magnus(c. 1200–1280) extending this into a theory of a petrifying fluid.[38][verification needed]These works appeared to have little influence onscholarsinMedieval Europewho looked to theBibleto explain the origins of fossils and sea-level changes, often attributing these to the 'Deluge', includingRistoro d'Arezzoin 1282.[35]It was not until theItalian RenaissancewhenLeonardo da Vinci(1452–1519) would reinvigorate the relationships between stratification, relative sea-level change, and time, denouncing attribution of fossils to the 'Deluge':[39][35]

Of the stupidity and ignorance of those who imagine that these creatures were carried to such places distant from the sea by the Deluge...Why do we find so many fragments and whole shells between the different layers of stone unless they had been upon the shore and had been covered over by earth newly thrown up by the sea which then became petrified? And if the above-mentioned Deluge had carried them to these places from the sea, you would find the shells at the edge of one layer of rock only, not at the edge of many where may be counted the winters of the years during which the sea multiplied the layers of sand and mud brought down by the neighboring rivers and spread them over its shores. And if you wish to say that there must have been many deluges in order to produce these layers and the shells among them it would then become necessary for you to affirm that such a deluge took place every year.

These views of da Vinci remained unpublished, and thus lacked influence at the time; however, questions of fossils and their significance were pursued and, while views againstGenesiswere not readily accepted and dissent fromreligiousdoctrine was in some places unwise, scholars such asGirolamo Fracastoroshared da Vinci's views, and found the attribution of fossils to the 'Deluge' absurd.[35]

Establishment of primary principles[edit]

Niels Stensen, more commonly known as Nicolas Steno (1638–1686), is credited with establishing four of the guiding principles of stratigraphy.[35]InDe solido intra solidum naturaliter contento dissertationis prodromusSteno states:[7][40]

  • When any given stratum was being formed, all the matter resting on it was fluid and, therefore, when the lowest stratum was being formed, none of the upper strata existed.
  • ...strata which are either perpendicular to the horizon or inclined to it were at one time parallel to the horizon.
  • When any given stratum was being formed, it was either encompassed at its edges by another solid substance or it covered the whole globe of the earth. Hence, it follows that wherever bared edges of strata are seen, either a continuation of the same strata must be looked for or another solid substance must be found that kept the material of the strata from being dispersed.
  • If a body or discontinuity cuts across a stratum, it must have formed after that stratum.

Respectively, these are the principles of superposition, original horizontality, lateral continuity, and cross-cutting relationships. From this Steno reasoned that strata were laid down in succession and inferred relative time (in Steno's belief, time fromCreation). While Steno's principles were simple and attracted much attention, applying them proved challenging.[35]These basic principles, albeit with improved and more nuanced interpretations, still form the foundational principles of determining the correlation of strata relative to geologic time.

Over the course of the 18th-century geologists realised that:

  • Sequences of strata often become eroded, distorted, tilted, or even inverted after deposition
  • Strata laid down at the same time in different areas could have entirely different appearances
  • The strata of any given area represented only part of Earth's long history

Formulation of a modern geologic time scale[edit]

The apparent, earliest formal division of the geologic record with respect to time was introduced byThomas Burnetwho applied a two-fold terminology to mountains by identifying "montes primarii"for rock formed at the time of the 'Deluge', and younger"monticulos secundarios "formed later from the debris of the "primarii ".[41][35]This attribution to the 'Deluge', while questioned earlier by the likes of da Vinci, was the foundation ofAbraham Gottlob Werner's (1749–1817)Neptunismtheory in which all rocks precipitated out of a single flood.[42]A competing theory,Plutonism,was developed byAnton Moro(1687–1784) and also used primary and secondary divisions for rock units.[43][35]In this early version of the Plutonism theory, the interior of Earth was seen as hot, and this drove the creation of primary igneous and metamorphic rocks and secondary rocks formed contorted and fossiliferous sediments. These primary and secondary divisions were expanded on byGiovanni Targioni Tozzetti(1712–1783) andGiovanni Arduino(1713–1795) to include tertiary and quaternary divisions.[35]These divisions were used to describe both the time during which the rocks were laid down, and the collection of rocks themselves (i.e., it was correct to say Tertiary rocks, and Tertiary Period). Only the Quaternary division is retained in the modern geologic time scale, while the Tertiary division was in use until the early 21st century. The Neptunism and Plutonism theories would compete into the early19th centurywith a key driver for resolution of this debate being the work ofJames Hutton(1726–1797), in particular hisTheory of the Earth,first presented before theRoyal Society of Edinburghin 1785.[44][8][45]Hutton's theory would later become known asuniformitarianism,popularised byJohn Playfair[46](1748–1819) and laterCharles Lyell(1797–1875) in hisPrinciples of Geology.[9][47][48]Their theories strongly contested the 6,000 year age of the Earth as suggested determined byJames Usshervia Biblical chronology that was accepted at the time by western religion. Instead, using geological evidence, they contested Earth to be much older, cementing the concept of deep time.

During the early 19th centuryWilliam Smith,Georges Cuvier,Jean d'Omalius d'Halloy,andAlexandre Brongniartpioneered the systematic division of rocks by stratigraphy and fossil assemblages. These geologists began to use the local names given to rock units in a wider sense, correlating strata across national and continental boundaries based on their similarity to each other. Many of the names below erathem/era rank in use on the modern ICC/GTS were determined during the early to mid-19th century.

The advent of geochronometry[edit]

During the 19th century, the debate regarding Earth's age was renewed, with geologists estimating ages based ondenudationrates and sedimentary thicknesses or ocean chemistry, and physicists determining ages for the cooling of the Earth or the Sun using basicthermodynamicsor orbital physics.[5]These estimations varied from 15,000 million years to 0.075 million years depending on method and author, but the estimations ofLord KelvinandClarence Kingwere held in high regard at the time due to their pre-eminence in physics and geology. All of these early geochronometric determinations would later prove to be incorrect.

The discovery ofradioactive decaybyHenri Becquerel,Marie Curie,andPierre Curielaid the ground work for radiometric dating, but the knowledge and tools required for accurate determination of radiometric ages would not be in place until the mid-1950s.[5]Early attempts at determining ages of uranium minerals and rocks byErnest Rutherford,Bertram Boltwood,Robert Strutt,and Arthur Holmes, would culminate in what are considered the first international geological time scales by Holmes in 1911 and 1913.[34][49][50]The discovery ofisotopesin 1913[51]byFrederick Soddy,and the developments inmass spectrometrypioneered byFrancis William Aston,Arthur Jeffrey Dempster,andAlfred O. C. Nierduring the early to mid-20th centurywould finally allow for the accurate determination of radiometric ages, with Holmes publishing several revisions to hisgeological time-scalewith his final version in 1960.[5][50][52][53]

Modern international geologic time scale[edit]

The establishment of the IUGS in 1961[54]and acceptance of the Commission on Stratigraphy (applied in 1965)[55]to become a member commission of IUGS led to the founding of the ICS. One of the primary objectives of the ICS is "the establishment, publication and revision of the ICS International Chronostratigraphic Chart which is the standard, reference global Geological Time Scale to include the ratified Commission decisions".[1]

Following on from Holmes, severalA Geological Time Scalebooks were published in 1982,[56]1989,[57]2004,[58]2008,[59]2012,[60]2016,[61]and 2020.[62]However, since 2013, the ICS has taken responsibility for producing and distributing the ICC citing the commercial nature, independent creation, and lack of oversight by the ICS on the prior published GTS versions (GTS books prior to 2013) although these versions were published in close association with the ICS.[2]SubsequentGeologic Time Scalebooks (2016[61]and 2020[62]) are commercial publications with no oversight from the ICS, and do not entirely conform to the chart produced by the ICS. The ICS produced GTS charts are versioned (year/month) beginning at v2013/01. At least one new version is published each year incorporating any changes ratified by the ICS since the prior version.

The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to the present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in the third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline.

SiderianRhyacianOrosirianStatherianCalymmianEctasianStenianTonianCryogenianEdiacaranCOsDCPTJKPgnEoarcheanPaleoarcheanMesoarcheanNeoarcheanPaleoproterozoicMesoproterozoicNeoproterozoicPaleozoicMesozoicCenozoicHadeanArcheanProterozoicPhanerozoicPrecambrian
CambrianOrdovicianSilurianDevonianCarboniferousPermianTriassicJurassicCretaceousPaleogeneNeogeneQuaternaryPaleozoicMesozoicCenozoicPhanerozoic
PaleoceneEoceneOligoceneMiocenePliocenePleistoceneHolocenePaleogeneNeogeneQuaternaryCenozoic
GelasianCalabrian (stage)ChibanianLate PleistocenePleistoceneHoloceneQuaternary

Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline)

GreenlandianNorthgrippianMeghalayanHolocene

Major proposed revisions to the ICC[edit]

Proposed Anthropocene Series/Epoch[edit]

First suggested in 2000,[63]theAnthropoceneis a proposed epoch/series for the most recent time in Earth's history. While still informal, it is a widely used term to denote the present geologic time interval, in which many conditions and processes on Earth are profoundly altered by human impact.[64]As of April 2022the Anthropocene has not been ratified by the ICS; however, in May 2019 theAnthropocene Working Groupvoted in favour of submitting a formal proposal to the ICS for the establishment of the Anthropocene Series/Epoch.[65]Nevertheless, the definition of the Anthropocene as a geologic time period rather than a geologic event remains controversial and difficult.[66][67][68][69]

Proposals for revisions to pre-Cryogenian timeline[edit]

Shields et al. 2021[edit]

An international working group of the ICS on pre-Cryogenian chronostratigraphic subdivision have outlined a template to improve the pre-Cryogenian geologic time scale based on the rock record to bring it in line with the post-Tonian geologic time scale.[6]This work assessed the geologic history of the currently defined eons and eras of the pre-Cambrian,[note 3]and the proposals in the "Geological Time Scale" books2004,[70]2012,[3]and2020.[71]Their recommend revisions[6]of the pre-Cryogenian geologic time scale were (changes from the current scale [v2023/09] are italicised):

  • Three divisions of the Archean instead of four by dropping Eoarchean, and revisions to their geochronometric definition, along with the repositioning of the Siderian into the latest Neoarchean, and a potential Kratian division in the Neoarchean.
    • Archean (4000–2450Ma)
      • Paleoarchean (4000–3500Ma)
      • Mesoarchean (3500–3000Ma)
      • Neoarchean (3000–2450Ma)
        • Kratian(no fixed time given, prior to the Siderian) – from Greek κράτος (krátos) 'strength'.
        • Siderian (?–2450Ma) – moved from Proterozoic to end of Archean, no start time given, base of Paleoproterozoic defines the end of the Siderian
  • Refinement of geochronometric divisions of the Proterozoic, Paleoproterozoic, repositioning of the Statherian into the Mesoproterozoic, new Skourian period/system in the Paleoproterozoic, new Kleisian or Syndian period/system in the Neoproterozoic.
    • Paleoproterozoic (2450–1800Ma)
      • Skourian(2450–2300 Ma) – from Greek σκουριά (skouriá) 'rust'.
      • Rhyacian (2300–2050 Ma)
      • Orosirian (2050–1800 Ma)
    • Mesoproterozoic (1800–1000 Ma)
      • Statherian(1800–1600 Ma)
      • Calymmian (1600–1400 Ma)
      • Ectasian (1400-1200 Ma)
      • Stenian (1200–1000 Ma)
    • Neoproterozoic (1000–538.8 Ma)[note 5]
      • KleisianorSyndian(1000–800Ma) – respectively from Greek κλείσιμο (kleísimo) 'closure' and σύνδεση (sýndesi) 'connection'.
      • Tonian (800–720 Ma)
      • Cryogenian (720–635 Ma)
      • Ediacaran (635–538.8 Ma)

Proposed pre-Cambrian timeline (Shield et al. 2021, ICS working group on pre-Cryogenian chronostratigraphy), shown to scale:[note 6]

Current ICC pre-Cambrian timeline (v2023/09), shown to scale:

Van Kranendonk et al. 2012 (GTS2012)[edit]

The book,Geologic Time Scale 2012,was the last commercial publication of an international chronostratigraphic chart that was closely associated with the ICS.[2]It included a proposal to substantially revise the pre-Cryogenian time scale to reflect important events such as theformation of the Solar Systemand theGreat Oxidation Event,among others, while at the same time maintaining most of the previous chronostratigraphic nomenclature for the pertinent time span.[72]As of April 2022these proposed changes have not been accepted by the ICS. The proposed changes (changes from the current scale [v2023/09]) are italicised:

  • Hadean Eon (4567–4030Ma)
  • Archean Eon/Eonothem (4030–2420Ma)
    • Paleoarchean Era/Erathem (4030–3490Ma)
    • Mesoarchean Era/Erathem (3490–2780Ma)
      • VaalbaranPeriod/System (3490–3020Ma) – based on the names of theKapvaal(Southern Africa) andPilbara(Western Australia)cratons,to reflect the growth of stable continental nuclei or proto-cratonickernels.[60]
      • PongolanPeriod/System (3020–2780Ma) – named after the Pongola Supergroup, in reference to the well preserved evidence of terrestrial microbial communities in those rocks.[60]
    • Neoarchean Era/Erathem (2780–2420Ma)
  • Proterozoic Eon/Eonothem (2420–538.8 Ma)[note 5]
    • Paleoproterozoic Era/Erathem (2420–1780Ma)
      • OxygenianPeriod/System (2420–2250Ma) – named for displaying the first evidence for a global oxidising atmosphere.[60]
      • JatulianorEukaryianPeriod/System (2250–2060Ma) – names are respectively for the Lomagundi–Jatuli δ13C isotopic excursion event spanning its duration, and for the (proposed)[75][76]first fossil appearance ofeukaryotes.[60]
      • Columbian Period/System(2060–1780Ma) – named after thesupercontinentColumbia.[60]
    • Mesoproterozoic Era/Erathem (1780–850Ma)
      • RodinianPeriod/System (1780–850Ma) – named after the supercontinentRodinia,stable environment.[60]

Proposed pre-Cambrian timeline (GTS2012), shown to scale:

Current ICC pre-Cambrian timeline (v2023/09), shown to scale:

Table of geologic time[edit]

The following table summarises the major events and characteristics of the divisions making up the geologic time scale of Earth. This table is arranged with the most recent geologic periods at the top, and the oldest at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time. As such, this table is not to scale and does not accurately represent the relative time-spans of each geochronologic unit. While thePhanerozoicEon looks longer than the rest, it merely spans ~539 million years (~12% of Earth's history), whilst the previous three eons[note 3]collectively span ~3,461 million years (~76% of Earth's history). This bias toward the most recent eon is in part due to the relative lack of information about events that occurred during the first three eons compared to the current eon (the Phanerozoic).[6][77]The use of subseries/subepochs has been ratified by the ICS.[17]

The content of the table is based on the official ICC produced and maintained by the ICS who also provide an online interactive version of this chart. The interactive version is based on a service delivering a machine-readableResource Description Framework/Web Ontology Languagerepresentation of the time scale, which is available through theCommission for the Management and Application of Geoscience InformationGeoSciMLproject as a service[78]and at aSPARQLend-point.[79][80]

Non-Earth based geologic time scales[edit]

Some otherplanetsandsatellitesin theSolar Systemhave sufficiently rigid structures to have preserved records of their own histories, for example,Venus,Marsand the Earth'sMoon.Dominantly fluid planets, such as thegiant planets,do not comparably preserve their history. Apart from theLate Heavy Bombardment,events on other planets probably had little direct influence on the Earth, and events on Earth had correspondingly little effect on those planets. Construction of a time scale that links the planets is, therefore, of only limited relevance to the Earth's time scale, except in a Solar System context. The existence, timing, and terrestrial effects of the Late Heavy Bombardment are still a matter of debate.[note 13]

Lunar (selenological) time scale[edit]

Thegeologic historyof Earth's Moon has been divided into a time scale based ongeomorphologicalmarkers, namelyimpact cratering,volcanism,anderosion.This process of dividing the Moon's history in this manner means that the time scale boundaries do not imply fundamental changes in geological processes, unlike Earth's geologic time scale. Five geologic systems/periods (Pre-Nectarian,Nectarian,Imbrian,Eratosthenian,Copernican), with the Imbrian divided into two series/epochs (Early and Late) were defined in the latest Lunar geologic time scale.[97]The Moon is unique in the Solar System in that it is the only other body from which we have rock samples with a known geological context.

Early ImbrianLate ImbrianPre-NectarianNectarianEratosthenianCopernican period
Millions of years before present


Martian geologic time scale[edit]

Thegeological history of Marshas been divided into two alternate time scales. The first time scale for Mars was developed by studying the impact crater densities on the Martian surface. Through this method four periods have been defined, the Pre-Noachian (~4,500–4,100 Ma), Noachian (~4,100–3,700 Ma), Hesperian (~3,700–3,000 Ma), and Amazonian (~3,000 Ma to present).[98][99]

Pre-NoachianNoachianHesperianAmazonian (Mars)
Martian time periods (millions of years ago)

Epochs:

A second time scale based on mineral alteration observed by the OMEGAspectrometeron board theMars Express.Using this method, three periods were defined, the Phyllocian (~4,500–4,000 Ma), Theiikian (~4,000–3,500 Ma), and Siderikian (~3,500 Ma to present).[100]

See also[edit]

Notes[edit]

  1. ^It is now known that not all sedimentary layers are deposited purely horizontally, but this principle is still a useful concept.
  2. ^Time spans of geologic time units vary broadly, and there is no numeric limitation on the time span they can represent. They are limited by the time span of the higher rank unit they belong to, and to the chronostratigraphic boundaries they are defined by.
  3. ^abcPrecambrian or pre-Cambrian is an informal geological term for time before the Cambrian period
  4. ^abThe Tertiary is a now obsolete geologic system/period spanning from 66 Ma to 2.6 Ma. It has no exact equivalent in the modern ICC, but is approximately equivalent to the merged Palaeogene and Neogene systems/periods.[18][19]
  5. ^abGeochronometric date for the Ediacaran has been adjusted to reflect ICC v2023/09 as the formal definition for the base of the Cambrian has not changed.
  6. ^Kratian time span is not given in the article. It lies within the Neoarchean, and prior to the Siderian. The position shown here is an arbitrary division.
  7. ^The dates and uncertainties quoted are according to theInternational Commission on StratigraphyInternational Chronostratigraphic chart (v2023/06). A*indicates boundaries where aGlobal Boundary Stratotype Section and Pointhas been internationally agreed.
  8. ^abcdFor more information on this, seeAtmosphere of Earth#Evolution of Earth's atmosphere,Carbon dioxide in the Earth's atmosphere,andclimate change.Specific graphs of reconstructed CO2levels over the past ~550, 65, and 5 million years can be seen atFile:Phanerozoic Carbon Dioxide.png,File:65 Myr Climate Change.png,File:Five Myr Climate Change.png,respectively.
  9. ^TheMississippianandPennsylvanianare official sub-systems/sub-periods.
  10. ^abThis is divided into Lower/Early, Middle, and Upper/Late series/epochs
  11. ^abcdefghijklmDefined by absolute age (Global Standard Stratigraphic Age).
  12. ^The age of the oldest measurablecraton,orcontinental crust,is dated to 3,600–3,800 Ma.
  13. ^Not enough is known about extra-solar planets for worthwhile speculation.

References[edit]

  1. ^abc"Statues & Guidelines".International Commission on Stratigraphy.Retrieved5 April2022.
  2. ^abcdefghiCohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. (1 September 2013)."The ICS International Chronostratigraphic Chart".Episodes.36(3) (updated ed.): 199–204.doi:10.18814/epiiugs/2013/v36i3/002.ISSN0705-3797.S2CID51819600.
  3. ^abcdefghijklmVan Kranendonk, Martin J.; Altermann, Wladyslaw; Beard, Brian L.; Hoffman, Paul F.; Johnson, Clark M.; Kasting, James F.; Melezhik, Victor A.; Nutman, Allen P. (2012),"A Chronostratigraphic Division of the Precambrian",The Geologic Time Scale,Elsevier, pp. 299–392,doi:10.1016/b978-0-444-59425-9.00016-0,ISBN978-0-444-59425-9,retrieved5 April2022
  4. ^"International Commission on Stratigraphy".International Geological Time Scale.Retrieved5 June2022.
  5. ^abcdDalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved".Special Publications, Geological Society of London.190(1): 205–221.Bibcode:2001GSLSP.190..205D.doi:10.1144/GSL.SP.2001.190.01.14.S2CID130092094.
  6. ^abcdeShields, Graham A.; Strachan, Robin A.; Porter, Susannah M.; Halverson, Galen P.; Macdonald, Francis A.; Plumb, Kenneth A.; de Alvarenga, Carlos J.; Banerjee, Dhiraj M.; Bekker, Andrey; Bleeker, Wouter; Brasier, Alexander (2022)."A template for an improved rock-based subdivision of the pre-Cryogenian timescale".Journal of the Geological Society.179(1): jgs2020–222.Bibcode:2022JGSoc.179..222S.doi:10.1144/jgs2020-222.ISSN0016-7649.S2CID236285974.
  7. ^abSteno, Nicolaus (1669).Nicolai Stenonis de solido intra solidvm natvraliter contento dissertationis prodromvs ad serenissimvm Ferdinandvm II...(in Latin). W. Junk.
  8. ^abHutton, James (1795).Theory of the Earth.Vol. 1. Edinburgh.
  9. ^abLyell, Sir Charles (1832).Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation.Vol. 1. London: John Murray.
  10. ^"International Commission on Stratigraphy - Stratigraphic Guide - Chapter 9. Chronostratigraphic Units".stratigraphy.org.Retrieved16 April2024.
  11. ^abcdefghijkl"Chapter 9. Chronostratigraphic Units".stratigraphy.org.International Commission on Stratigraphy.Retrieved2 April2022.
  12. ^abc"Chapter 3. Definitions and Procedures".stratigraphy.org.International Commission on Stratigraphy.Retrieved2 April2022.
  13. ^"Global Boundary Stratotype Section and Points".stratigraphy.org.International Commission on Stratigraphy.Retrieved2 April2022.
  14. ^Knoll, Andrew; Walter, Malcolm; Narbonne, Guy; Christie-Blick, Nicholas (2006)."The Ediacaran Period: a new addition to the geologic time scale".Lethaia.39(1): 13–30.Bibcode:2006Letha..39...13K.doi:10.1080/00241160500409223.
  15. ^Remane, Jürgen; Bassett, Michael G; Cowie, John W; Gohrbandt, Klaus H; Lane, H Richard; Michelsen, Olaf; Naiwen, Wang; the cooperation of members of ICS (1 September 1996)."Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS)".Episodes.19(3): 77–81.doi:10.18814/epiiugs/1996/v19i3/007.ISSN0705-3797.
  16. ^abcdeMichael Allaby (2020).A dictionary of geology and earth sciences(Fifth ed.). Oxford.ISBN978-0-19-187490-1.OCLC1137380460.{{cite book}}:CS1 maint: location missing publisher (link)
  17. ^abAubry, Marie-Pierre; Piller, Werner E.; Gibbard, Philip L.; Harper, David A. T.; Finney, Stanley C. (1 March 2022)."Ratification of subseries/subepochs as formal rank/units in international chronostratigraphy".Episodes.45(1): 97–99.doi:10.18814/epiiugs/2021/021016.ISSN0705-3797.S2CID240772165.
  18. ^Head, Martin J.; Gibbard, Philip; Salvador, Amos (1 June 2008)."The Quaternary: its character and definition".Episodes.31(2): 234–238.doi:10.18814/epiiugs/2008/v31i2/009.ISSN0705-3797.
  19. ^Gibbard, Philip L.; Head, Martin J.; Walker, Michael J. C.; the Subcommission on Quaternary Stratigraphy (20 January 2010)."Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma".Journal of Quaternary Science.25(2): 96–102.Bibcode:2010JQS....25...96G.doi:10.1002/jqs.1338.ISSN0267-8179.
  20. ^Desnoyers, J. (1829)."Observations sur un ensemble de dépôts marins plus récents que les terrains tertiaires du bassin de la Seine, et constituant une formation géologique distincte; précédées d'un aperçu de la nonsimultanéité des bassins tertiares"[Observations on a set of marine deposits [that are] more recent than the tertiary terrains of the Seine basin and [that] constitute a distinct geological formation; preceded by an outline of the non-simultaneity of tertiary basins].Annales des Sciences Naturelles(in French).16:171–214, 402–491.From p. 193:"Ce que je désirerais... dont il faut également les distinguer."(What I would desire to prove above all is that the series of tertiary deposits continued – and even began in the more recent basins – for a long time, perhaps after that of the Seine had been completely filled, and that these later formations –Quaternary(1), so to say – should not retain the name of alluvial deposits any more than the true and ancient tertiary deposits, from which they must also be distinguished.) However, on the very same page, Desnoyers abandoned the use of the term "Quaternary" because the distinction between Quaternary and Tertiary deposits wasn't clear. From p. 193:"La crainte de voir mal comprise... que ceux du bassin de la Seine."(The fear of seeing my opinion in this regard be misunderstood or exaggerated, has made me abandon the word "quaternary", which at first I had wanted to apply to all deposits more recent than those of the Seine basin.)
  21. ^d'Halloy, d'O., J.-J. (1822)."Observations sur un essai de carte géologique de la France, des Pays-Bas, et des contrées voisines"[Observations on a trial geological map of France, the Low Countries, and neighboring countries].Annales des Mines.7:353–376.{{cite journal}}:CS1 maint: multiple names: authors list (link)From page 373: "La troisième, qui correspond à ce qu'on a déja appelé formation de la craie, sera désigné par le nom de terrain crétacé." (The third, which corresponds to what was already called the "chalk formation", will be designated by the name "chalky terrain".)
  22. ^Humboldt, Alexander von (1799).Ueber die unterirdischen Gasarten und die Mittel ihren Nachtheil zu vermindern: ein Beytrag zur Physik der praktischen Bergbaukunde(in German). Vieweg.
  23. ^Brongniart, Alexandre (1770-1847) Auteur du texte (1829).Tableau des terrains qui composent l'écorce du globe ou Essai sur la structure de la partie connue de la terre. Par Alexandre Brongniart,...(in French).{{cite book}}:CS1 maint: numeric names: authors list (link)
  24. ^Ogg, J.G.; Hinnov, L.A.; Huang, C. (2012),"Jurassic",The Geologic Time Scale,Elsevier, pp. 731–791,doi:10.1016/b978-0-444-59425-9.00026-3,ISBN978-0-444-59425-9,retrieved1 May2022
  25. ^Murchison; Murchison, Sir Roderick Impey; Verneuil; Keyserling, Graf Alexander (1842).On the Geological Structure of the Central and Southern Regions of Russia in Europe, and of the Ural Mountains.Print. by R. and J.E. Taylor.
  26. ^Phillips, John (1835).Illustrations of the Geology of Yorkshire: Or, A Description of the Strata and Organic Remains: Accompanied by a Geological Map, Sections and Plates of the Fossil Plants and Animals...J. Murray.
  27. ^Sedgwick, A.; Murchison, R. I. (1 January 1840)."XLIII.--On the Physical Structure of Devonshire, and on the Subdivisions and Geological Relations of its older stratified Deposits, &c".Transactions of the Geological Society of London.s2-5(3): 633–703.doi:10.1144/transgslb.5.3.633.ISSN2042-5295.S2CID128475487.
  28. ^Murchison, Roderick Impey (1835)."VII. On the silurian system of rocks".The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.7(37): 46–52.doi:10.1080/14786443508648654.ISSN1941-5966.
  29. ^Lapworth, Charles (1879)."I.—On the Tripartite Classification of the Lower Palæozoic Rocks".Geological Magazine.6(1): 1–15.Bibcode:1879GeoM....6....1L.doi:10.1017/S0016756800156560.ISSN0016-7568.S2CID129165105.
  30. ^Bassett, Michael G. (1 June 1979)."100 Years of Ordovician Geology".Episodes.2(2): 18–21.doi:10.18814/epiiugs/1979/v2i2/003.ISSN0705-3797.
  31. ^Chisholm, Hugh,ed. (1911)."Cambria".Encyclopædia Britannica(11th ed.). Cambridge University Press.
  32. ^Butcher, Andy (26 May 2004)."Re: Ediacaran".LISTSERV 16.0 - AUSTRALIAN-LINGUISTICS-L Archives.Archived fromthe originalon 23 October 2007.Retrieved19 July2011.
  33. ^"Place Details: Ediacara Fossil Site – Nilpena, Parachilna, SA, Australia".Department of Sustainability, Environment, Water, Population and Communities.Australian Heritage Database.Commonwealth of Australia.Archivedfrom the original on 3 June 2011.Retrieved19 July2011.
  34. ^abHolmes, Arthur (9 June 1911)."The association of lead with uranium in rock-minerals, and its application to the measurement of geological time".Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character.85(578): 248–256.Bibcode:1911RSPSA..85..248H.doi:10.1098/rspa.1911.0036.ISSN0950-1207.
  35. ^abcdefghijkFischer, Alfred G.; Garrison, Robert E. (2009)."The role of the Mediterranean region in the development of sedimentary geology: a historical overview".Sedimentology.56(1): 3–41.Bibcode:2009Sedim..56....3F.doi:10.1111/j.1365-3091.2008.01009.x.S2CID128604255.
  36. ^Sivin, Nathan (1995).Science in ancient China: researches and reflections.Variorum.ISBN0-86078-492-4.OCLC956775994.
  37. ^Adams, Frank D. (1938).The Birth and Development of the Geological Sciences.Williams & Wilkins.ISBN0-486-26372-X.OCLC165626104.
  38. ^Rudwick, M. J. S. (1985).The meaning of fossils: episodes in the history of palaeontology.Chicago: University of Chicago Press.ISBN0-226-73103-0.OCLC11574066.
  39. ^McCurdy, Edward (1938).The notebooks of Leonardo da Vinci.New York: Reynal & Hitchcock.OCLC2233803.
  40. ^Kardel, Troels; Maquet, Paul (2018),"2.27 the Prodromus to a Dissertation on a Solid Naturally Contained within a Solid",Nicolaus Steno,Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 763–825,doi:10.1007/978-3-662-55047-2_38,ISBN978-3-662-55046-5,retrieved20 April2022
  41. ^Burnet, Thomas (1681).Telluris Theoria Sacra: orbis nostri originen et mutationes generales, quasi am subiit aut olim subiturus est, complectens. Libri duo priores de Diluvio & Paradiso(in Latin). London: G. Kettiby.
  42. ^Werner, Abraham Gottlob (1787).Kurze Klassifikation und Beschreibung der verschiedenen Gebirgsarten(in German). Dresden: Walther.
  43. ^Moro, Anton Lazzaro (1740).De'crostacei e degli altri marini corpi che si truovano su'monti(in Italian). Appresso Stefano Monti.
  44. ^Hutton, James (1788)."X. Theory of the Earth; or an Investigation of the Laws observable in the Composition, Dissolution, and Restoration of Land upon the Globe".Transactions of the Royal Society of Edinburgh.1(2): 209–304.doi:10.1017/S0080456800029227.ISSN0080-4568.S2CID251578886.
  45. ^Hutton, James (1795).Theory of the Earth.Vol. 2. Edinburgh.
  46. ^Playfair, John (1802).Illustrations of the Huttonian theory of the earth.Digitised by London Natural History Museum Library. Edinburgh: Neill & Co.
  47. ^Lyell, Sir Charles (1832).Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation.Vol. 2. London: John Murray.
  48. ^Lyell, Sir Charles (1834).Principles of Geology: Being an Inquiry how for the Former Changes of the Earth's Surface are Referrable to Causes Now in Operation.Vol. 3. London: John Murray.
  49. ^Holmes, Arthur (1913).The age of the earth.Gerstein - University of Toronto. London, Harper.
  50. ^abLewis, Cherry L. E. (2001)."Arthur Holmes' vision of a geological timescale".Geological Society, London, Special Publications.190(1): 121–138.Bibcode:2001GSLSP.190..121L.doi:10.1144/GSL.SP.2001.190.01.10.ISSN0305-8719.S2CID128686640.
  51. ^Soddy, Frederick (4 December 1913)."Intra-atomic Charge".Nature.92(2301): 399–400.Bibcode:1913Natur..92..399S.doi:10.1038/092399c0.ISSN0028-0836.S2CID3965303.
  52. ^Holmes, A. (1 January 1959)."A revised geological time-scale".Transactions of the Edinburgh Geological Society.17(3): 183–216.doi:10.1144/transed.17.3.183.ISSN0371-6260.S2CID129166282.
  53. ^"A Revised Geological Time-Scale".Nature.187(4731): 27–28. 1960.Bibcode:1960Natur.187T..27..doi:10.1038/187027d0.ISSN0028-0836.S2CID4179334.
  54. ^Harrison, James M. (1 March 1978)."The Roots of IUGS".Episodes.1(1): 20–23.doi:10.18814/epiiugs/1978/v1i1/005.ISSN0705-3797.
  55. ^International Union of Geological Sciences. Commission on Stratigraphy (1986).Guidelines and statutes of the International Commission on Stratigraphy (ICS).J. W. Cowie. Frankfurt a.M.: Herausgegeben von der Senckenbergischen Naturforschenden Gesellschaft.ISBN3-924500-19-3.OCLC14352783.
  56. ^W. B. Harland (1982).A geologic time scale.Cambridge [England]: Cambridge University Press.ISBN0-521-24728-4.OCLC8387993.
  57. ^W. B. Harland (1990).A geologic time scale 1989.Cambridge: Cambridge University Press.ISBN0-521-38361-7.OCLC20930970.
  58. ^F. M. Gradstein; James G. Ogg; A. Gilbert Smith (2004).A geologic time scale 2004.Cambridge, UK: Cambridge University Press.ISBN0-511-08201-0.OCLC60770922.
  59. ^Gradstein, Felix M.; Ogg, James G.; van Kranendonk, Martin (23 July 2008)."On the Geologic Time Scale 2008".Newsletters on Stratigraphy.43(1): 5–13.doi:10.1127/0078-0421/2008/0043-0005.ISSN0078-0421.
  60. ^abcdefghijklmF. M. Gradstein (2012).The geologic time scale 2012. Volume 2(1st ed.). Amsterdam: Elsevier.ISBN978-0-444-59448-8.OCLC808340848.
  61. ^abOgg, James G. (2016).A concise geologic time scale 2016.Gabi Ogg, F. M. Gradstein. Amsterdam, Netherlands: Elsevier.ISBN978-0-444-59468-6.OCLC949988705.
  62. ^abF. M. Gradstein; James G. Ogg; Mark D. Schmitz; Gabi Ogg (2020).Geologic time scale 2020.Amsterdam, Netherlands.ISBN978-0-12-824361-9.OCLC1224105111.{{cite book}}:CS1 maint: location missing publisher (link)
  63. ^Crutzen, Paul J.; Stoermer, Eugene F. (2021), Benner, Susanne; Lax, Gregor; Crutzen, Paul J.; Pöschl, Ulrich (eds.),"The 'Anthropocene' (2000)",Paul J. Crutzen and the Anthropocene: A New Epoch in Earth's History,The Anthropocene: Politik—Economics—Society—Science, vol. 1, Cham: Springer International Publishing, pp. 19–21,doi:10.1007/978-3-030-82202-6_2,ISBN978-3-030-82201-9,S2CID245639062,retrieved15 April2022
  64. ^"Working Group on the 'Anthropocene' | Subcommission on Quaternary Stratigraphy".Archived fromthe originalon 7 April 2022.Retrieved17 April2022.
  65. ^Subramanian, Meera (21 May 2019)."Anthropocene now: influential panel votes to recognise Earth's new epoch".Nature:d41586–019–01641–5.doi:10.1038/d41586-019-01641-5.ISSN0028-0836.PMID32433629.S2CID182238145.
  66. ^Gibbard, Philip L.; Bauer, Andrew M.; Edgeworth, Matthew; Ruddiman, William F.; Gill, Jacquelyn L.; Merritts, Dorothy J.; Finney, Stanley C.; Edwards, Lucy E.; Walker, Michael J. C.; Maslin, Mark; Ellis, Erle C. (15 November 2021)."A practical solution: the Anthropocene is a geological event, not a formal epoch".Episodes.45(4): 349–357.doi:10.18814/epiiugs/2021/021029.ISSN0705-3797.S2CID244165877.
  67. ^Head, Martin J.; Steffen, Will; Fagerlind, David; Waters, Colin N.; Poirier, Clement; Syvitski, Jaia; Zalasiewicz, Jan A.; Barnosky, Anthony D.; Cearreta, Alejandro; Jeandel, Catherine; Leinfelder, Reinhold (15 November 2021)."The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch".Episodes.45(4): 359–376.doi:10.18814/epiiugs/2021/021031.ISSN0705-3797.S2CID244145710.
  68. ^Zalasiewicz, Jan; Waters, Colin N.; Ellis, Erle C.; Head, Martin J.; Vidas, Davor; Steffen, Will; Thomas, Julia Adeney; Horn, Eva; Summerhayes, Colin P.; Leinfelder, Reinhold; McNeill, J. R. (2021)."The Anthropocene: Comparing Its Meaning in Geology (Chronostratigraphy) with Conceptual Approaches Arising in Other Disciplines".Earth's Future.9(3).Bibcode:2021EaFut...901896Z.doi:10.1029/2020EF001896.ISSN2328-4277.S2CID233816527.
  69. ^Bauer, Andrew M.; Edgeworth, Matthew; Edwards, Lucy E.; Ellis, Erle C.; Gibbard, Philip; Merritts, Dorothy J. (16 September 2021)."Anthropocene: event or epoch?".Nature.597(7876): 332.Bibcode:2021Natur.597..332B.doi:10.1038/d41586-021-02448-z.ISSN0028-0836.PMID34522014.S2CID237515330.
  70. ^Bleeker, W. (17 March 2005), Gradstein, Felix M.; Ogg, James G.; Smith, Alan G. (eds.),"Toward a" natural "Precambrian time scale",A Geologic Time Scale 2004(1 ed.), Cambridge University Press, pp. 141–146,doi:10.1017/cbo9780511536045.011,ISBN978-0-521-78673-7,retrieved9 April2022
  71. ^Strachan, R.; Murphy, J.B.; Darling, J.; Storey, C.; Shields, G. (2020),"Precambrian (4.56–1 Ga)",Geologic Time Scale 2020,Elsevier, pp. 481–493,doi:10.1016/b978-0-12-824360-2.00016-4,ISBN978-0-12-824360-2,S2CID229513433,retrieved9 April2022
  72. ^Van Kranendonk, Martin J. (2012). "A Chronostratigraphic Division of the Precambrian". In Felix M. Gradstein; James G. Ogg; Mark D. Schmitz; abi M. Ogg (eds.).The geologic time scale 2012(1st ed.). Amsterdam: Elsevier. pp. 359–365.doi:10.1016/B978-0-444-59425-9.00016-0.ISBN978-0-44-459425-9.
  73. ^abcGoldblatt, C.; Zahnle, K. J.; Sleep, N. H.; Nisbet, E. G. (2010)."The Eons of Chaos and Hades".Solid Earth.1(1): 1–3.Bibcode:2010SolE....1....1G.doi:10.5194/se-1-1-2010.
  74. ^Chambers, John E. (July 2004)."Planetary accretion in the inner Solar System"(PDF).Earth and Planetary Science Letters.223(3–4): 241–252.Bibcode:2004E&PSL.223..241C.doi:10.1016/j.epsl.2004.04.031.Archived(PDF)from the original on 19 April 2012.
  75. ^El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; et al. (2014)."The 2.1 Ga Old Francevillian Biota: Biogenicity, Taphonomy and Biodiversity".PLOS ONE.9(6): e99438.Bibcode:2014PLoSO...999438E.doi:10.1371/journal.pone.0099438.PMC4070892.PMID24963687.
  76. ^El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Bekker, Andrey; Macchiarelli, Roberto; Mazurier, Arnaud; Hammarlund, Emma U.; et al. (2010)."Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago"(PDF).Nature.466(7302): 100–104.Bibcode:2010Natur.466..100A.doi:10.1038/nature09166.PMID20596019.S2CID4331375.[permanent dead link]
  77. ^"Geological time scale".Digital Atlas of Ancient Life.Paleontological Research Institution.Retrieved17 January2022.
  78. ^"Geologic Timescale Elements in the International Chronostratigraphic Chart".Retrieved3 August2014.
  79. ^Cox, Simon J. D."SPARQL endpoint for CGI timescale service".Archived fromthe originalon 6 August 2014.Retrieved3 August2014.
  80. ^Cox, Simon J. D.; Richard, Stephen M. (2014). "A geologic timescale ontology and service".Earth Science Informatics.8:5–19.doi:10.1007/s12145-014-0170-6.S2CID42345393.
  81. ^Hoag, Colin; Svenning, Jens-Christian (17 October 2017)."African Environmental Change from the Pleistocene to the Anthropocene".Annual Review of Environment and Resources.42(1): 27–54.doi:10.1146/annurev-environ-102016-060653.ISSN1543-5938.Archived fromthe originalon 1 May 2022.Retrieved5 June2022.
  82. ^Bartoli, G; Sarnthein, M; Weinelt, M; Erlenkeuser, H; Garbe-Schönberg, D; Lea, D.W (2005)."Final closure of Panama and the onset of northern hemisphere glaciation".Earth and Planetary Science Letters.237(1–2): 33–44.Bibcode:2005E&PSL.237...33B.doi:10.1016/j.epsl.2005.06.020.
  83. ^abTyson, Peter (October 2009)."NOVA, Aliens from Earth: Who's who in human evolution".PBS.Retrieved8 October2009.
  84. ^Gannon, Colin (26 April 2013)."Understanding the Middle Miocene Climatic Optimum: Evaluation of Deuterium Values (δD) Related to Precipitation and Temperature".Honors Projects in Science and Technology.
  85. ^abcdRoyer, Dana L. (2006)."CO2-forced climate thresholds during the Phanerozoic "(PDF).Geochimica et Cosmochimica Acta.70(23): 5665–75.Bibcode:2006GeCoA..70.5665R.doi:10.1016/j.gca.2005.11.031.Archived fromthe original(PDF)on 27 September 2019.Retrieved6 August2015.
  86. ^"Here's What the Last Common Ancestor of Apes and Humans Looked Like".Live Science.10 August 2017.
  87. ^Nengo, Isaiah; Tafforeau, Paul; Gilbert, Christopher C.; Fleagle, John G.; Miller, Ellen R.; Feibel, Craig; Fox, David L.; Feinberg, Josh; Pugh, Kelsey D.; Berruyer, Camille; Mana, Sara (2017)."New infant cranium from the African Miocene sheds light on ape evolution".Nature.548(7666): 169–174.Bibcode:2017Natur.548..169N.doi:10.1038/nature23456.ISSN0028-0836.PMID28796200.S2CID4397839.
  88. ^Deconto, Robert M.; Pollard, David (2003)."Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2"(PDF).Nature.421(6920): 245–249.Bibcode:2003Natur.421..245D.doi:10.1038/nature01290.PMID12529638.S2CID4326971.
  89. ^Medlin, L. K.; Kooistra, W. H. C. F.; Gersonde, R.; Sims, P. A.; Wellbrock, U. (1997). "Is the origin of the diatoms related to the end-Permian mass extinction?".Nova Hedwigia.65(1–4): 1–11.doi:10.1127/nova.hedwigia/65/1997/1.hdl:10013/epic.12689.
  90. ^Williams, Joshua J.; Mills, Benjamin J. W.; Lenton, Timothy M. (2019)."A tectonically driven Ediacaran oxygenation event".Nature Communications.10(1): 2690.Bibcode:2019NatCo..10.2690W.doi:10.1038/s41467-019-10286-x.ISSN2041-1723.PMC6584537.PMID31217418.
  91. ^Naranjo-Ortiz, Miguel A.; Gabaldón, Toni (25 April 2019)."Fungal evolution: major ecological adaptations and evolutionary transitions".Biological Reviews of the Cambridge Philosophical Society.94(4).Cambridge Philosophical Society(Wiley): 1443–1476.doi:10.1111/brv.12510.ISSN1464-7931.PMC6850671.PMID31021528.S2CID131775942.
  92. ^Žárský, Jakub; Žárský, Vojtěch; Hanáček, Martin; Žárský, Viktor (27 January 2022)."Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split".Frontiers in Plant Science.12:735020.doi:10.3389/fpls.2021.735020.ISSN1664-462X.PMC8829067.PMID35154170.
  93. ^Yoon, Hwan Su; Hackett, Jeremiah D.; Ciniglia, Claudia; Pinto, Gabriele; Bhattacharya, Debashish (2004)."A Molecular Timeline for the Origin of Photosynthetic Eukaryotes".Molecular Biology and Evolution.21(5): 809–818.doi:10.1093/molbev/msh075.ISSN1537-1719.PMID14963099.
  94. ^Bowring, Samuel A.; Williams, Ian S. (1999). "Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada".Contributions to Mineralogy and Petrology.134(1): 3.Bibcode:1999CoMP..134....3B.doi:10.1007/s004100050465.S2CID128376754.
  95. ^Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Maruyama, Shigenori (2007),Chapter 3.1 the Early Archean Acasta Gneiss Complex: Geological, Geochronological and Isotopic Studies and Implications for Early Crustal Evolution,Developments in Precambrian Geology, vol. 15, Elsevier, pp. 127–147,doi:10.1016/s0166-2635(07)15031-3,ISBN978-0-444-52810-0,retrieved1 May2022
  96. ^Wilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (2001)."Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago".Nature.409(6817): 175–178.doi:10.1038/35051550.ISSN0028-0836.PMID11196637.S2CID4319774.
  97. ^Wilhelms, Don E. (1987).The geologic history of the Moon.Professional Paper. United States Geological Survey.doi:10.3133/pp1348.
  98. ^Tanaka, Kenneth L. (1986)."The stratigraphy of Mars".Journal of Geophysical Research.91(B13): E139.Bibcode:1986JGR....91E.139T.doi:10.1029/JB091iB13p0E139.ISSN0148-0227.
  99. ^Carr, Michael H.; Head, James W. (1 June 2010)."Geologic history of Mars".Earth and Planetary Science Letters.Mars Express after 6 Years in Orbit: Mars Geology from Three-Dimensional Mapping by the High Resolution Stereo Camera (HRSC) Experiment.294(3): 185–203.Bibcode:2010E&PSL.294..185C.doi:10.1016/j.epsl.2009.06.042.ISSN0012-821X.
  100. ^Bibring, Jean-Pierre; Langevin, Yves; Mustard, John F.; Poulet, François; Arvidson, Raymond; Gendrin, Aline; Gondet, Brigitte; Mangold, Nicolas; Pinet, P.; Forget, F.; Berthé, Michel (21 April 2006)."Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data".Science.312(5772): 400–404.Bibcode:2006Sci...312..400B.doi:10.1126/science.1122659.ISSN0036-8075.PMID16627738.S2CID13968348.

Further reading[edit]

External links[edit]