Jump to content

Allison Engine Company

From Wikipedia, the free encyclopedia

Allison Engine Company
Company typeDivision
IndustryAerospace
FounderJames Allison
FateAcquired byRolls-Royce plcin 1995, becomingRolls-Royce North America
SuccessorRolls-Royce North America
Headquarters,
ParentGeneral Motors
(1929–1995)

TheAllison Engine Companywas an Americanaircraft enginemanufacturer. Shortly after the death ofJames Allisonin 1929 the company was purchased by theFisher brothers.Fisher sold the company toGeneral Motors,which owned it for most of its history. It was acquired byRolls-Royce plcin 1995 to become the USsubsidiary,Rolls-Royce North America.

History[edit]

A predecessor of Allison Engine Company, theConcentrated Acetylene Company,was founded in September 1904 by James Allison,Percy C. "Fred" AveryandCarl G. Fisher.Avery was the holder of the patent for the product. This company was the predecessor of thePrest-O-Lite Company,a manufacturer ofacetyleneheadlights. An explosion at the acetylene gas works in downtown Indianapolis caused the company to relocate out of town, near the race track inSpeedway, Indiana.Allison and Fisher raced automobiles at that track, each owning a race car team. This hobby resulted in Allison building a shop at the track in Speedway where he maintained his fleet of race cars. This shop became the site for Allison Plant #1. Fisher and Allison sold their interest in Prest-O-Lite toUnion Carbidefor $9,000,000.[1]

Allison Speedway Team Company[edit]

Allison started as an engine and car "hot rodding" company servicing theIndianapolis Motor SpeedwayinIndianapolis.James Allison was the owner of theIndianapolis Speedway Team Company,a race car business in Indianapolis, Indiana. While it was founded as the Indianapolis Speedway Team Company, its name changed numerous times, first to the Allison Speedway Team Company, then the Allison Experimental Company and last as the Allison Engineering Company before becoming a division ofGeneral Motors.[2]

The company's only regular production item was a patented steel-backed lead bearing, which was used in various high performance engines.[a]It also built various drive shafts, extensions and gear chains for high power engines, on demand. Later its main business was the conversion of olderLiberty enginesto more powerful models, both for aircraft and marine use.

Allison needed a place where his race car engines could be modified and repaired. On January 1, 1917 Allison moved into a building at what was to become, in later years, theIndianapolis Motor Speedway.Along with the move, Allison hired Norman H. Gillman, a very talented engineer from a competing race team, as his chief engineer.[1]

Allison's move to Florida[edit]

Allison moved to Florida to invest in real estate after World War I, leaving Gillman in charge. Allison did not want the company to wither, so he asked Gillman to build a V-12 marine engine worthy of the Allison name. Gillman then proceeded to build an engine that relied on what was learned from building and modifying the venerable Liberty engine.[1]

Allison's company was sold to CaptainEddie Rickenbackerin 1927 for $700,000 after Allison moved to Florida. In 1929, shortly after the death of James Allison, the company was purchased by theFisher brothers.The Fishers sold the company toGeneral Motors,who owned it for most of its history. The Allison Engine Company was acquired in 1995 byRolls-Royce plc,[4]and became theRolls-Royce Corporationsubsidiary.[2]

Hyper engine[edit]

In the late 1920s theUnited States Armyfunded the development of a series of high-power engines, as part of itshyper engineseries, which it intended to produce onContinental Motors' production lines. Allison's manager, Norman Gilman, decided to experiment with his own high-power cylinder design. Allison's engine became Manufacturer Serial No. 1, AAC S/N 25-521. It was the X-4520, a 24-cylinder air-cooled 4-bank “X” configured engine designed by the Army Air Corps and built by the Allison Engineering Company in 1925. The result was presented to the Army in 1928, which turned down the development proposal.[2]

General Motors[edit]

In 1929, shortly after the death of James Allison, the company was purchased by the Fisher brothers,[2]who instructed it to use the cylinder design for a six-cylinder engine for a "family aircraft". Before work on this design had progressed very far, Fisher sold the company to General Motors, which ended development owing to financial pressures of theGreat Depression.Nevertheless, Gilman pressed ahead with the cylinder design, building a "paper project" V-12 engine. The Army was once again uninterested, but instead suggested Allison try selling it to theUnited States Navy.The Navy agreed to fund development of A and B models to a very limited degree for itsairships,until the crash of theUSSMaconin 1935, when the Navy's need for a 1,000 hp (750 kW) engine disappeared.

V-1710[edit]

GMH Allison Overhaul Assembly Plant in Brisbane during the Second World War
Allison V-1710-115

The very firstV-1710was purchased by the U.S. Navy as their GV-1710-2, and appears to have had an Allison serial of number 1, suggesting that they restarted numbering for the V-1710. The first V-1710 engine purchased by the USAAC was AAC 33-42, Allison Serial No. 2, the XV-1710-1, while Serial Nos. 3, 4, 5 were V-1710-4 engines for U.S. Navy airships, followed by a batch of 11 Air Corps engines purchased with FY-1934 funds (34-4 through 34-14) that covered Allison serials 6 through 16. After these the production race was on, totaling over 70,000 V-1710s.[2]

By this time the Army had become more interested in the design, and asked Allison to continue with a new "C" model. They had few funds of their own to invest, and Allison supported much of the development out of their own pocket. TheV-1710-Cfirst flew on 14 December 1936 in theConsolidated A-11A testbed. The V-1710-C6 completed the Army 150 hour Type Test on 23 April 1937, at 1,000 hp (750 kW), the first engine of any type to do so. By then all of the other Army engine projects had been cancelled or withdrawn, leaving the V-1710 as the only modern design available. It was soon found as the primary power plant of the new generation ofUnited States Army Air Corps(USAAC) fighters, theP-38 Lightning,P-39 AiracobraandP-40 Warhawk.

The Army had been leaning heavily towards exhaust-driventurbochargers,instead of the more common mechanically drivensuperchargers,favoring the theoretical advantage of using the otherwise wasted energy in the exhaust. Thus, little effort was invested in equipping the V-1710 with a complex two-stage supercharger, and when placed in aircraft designs like the P-39 or P-40, which lacked the room for a turbocharger, the engine suffered tremendously at higher altitudes. It was for this reason in particular that the V-1710 was later removed from theP-51 Mustangand replaced with theRolls-Royce Merlin.

Post-war[edit]

With the need for the V-1710 winding down at the end of the war, Allison found itself with a large production infrastructure that was no longer needed. For this reason, in 1947, the Army decided to takeGeneral Electric's versions ofFrank Whittle'sjet enginesand give them to Allison to produce instead. The main production model was GE's 4,000 lbf (18 kN) I-40, produced as theAllison J33.By the time production ended in 1955, Allison had produced over 7,000 J33s.

Allison also took over GE'saxial flowengine design, becoming theAllison J35.The J35 was the primary powerplant for theF-84 ThunderjetandF-89 Scorpion,as well as appearing on numerous prototype designs. The J35 also finished production in 1955, by which point over 14,000 had been delivered.

Allison also began development of a series ofturbopropengines for the U.S. Navy, starting with theT38and a "twinned" version as theT40.The Navy was interested only in the T40,[citation needed]but the complexities of the drive shaft arrangement doomed the engine and the project was eventually cancelled. Allison tried again with theT56,basically an enlarged T38 with the power of the T40, and was eventually rewarded when this engine was selected to power theC-130 Hercules.Allison turboprop engines were also used to re-engineConvairprop airliners which resulted in theConvair 580turboprop passenger aircraft which was widely used by local service and regional airlines in the U.S. such asAllegheny Airlines,the originalFrontier Airlines,North Central Airlines,as well as major carriersAmerican,Eastern,United,andPan-Am.

Over the years a family of engines based on the T56 configuration was developed, culminating in the T406/Allison AE1107turboshaft for theV-22 Osprey,theAllison AE2100turboprop, used on newer models of the C-130 and the Allison/Rolls-Royce AE 3007turbofan which propels many regional airline aircraft, such as theEmbraerERJ 135,ERJ 140andERJ 145family of regional passenger jets that continue to be widely used in the airline industry.

One of Allison's most successful projects is theModel 250turboshaft/turboprop engine family, which was started by the company in the early 1960s, when helicopters started to be powered by turbine, rather than reciprocating, engines. Allison turbine engines were used to powerBell 206Jet Rangerand Long Ranger helicopters as well as the initial version of theSikorsky S-76helicopter.

Experiments[edit]

In the mid-1970s the Allison Division ofGeneral Motors Corporationin Detroit designedceramiccomponents into theAllison GT 404-4 turboshaft engineintended for trucks. Allison continued to work with General Motors on development of ceramic-turbinepowered engines until the early 1990s. During their work they were able to engineer fairly stable automobile engines that were capable of burning a variety of fuels, such as gasoline, Diesel, kerosene, alcohol, vegetable oil, and coal powder.[5]

In the 1980s Allison collaborated withPratt & Whitneyon demonstrating the578-DXpropfan.Unlike the competingGeneral Electric GE-36 UDF,the 578-DX was fairly conventional, having a reduction gearbox between the LP turbine and the propfan blades. Noise considerations, plus a significant reduction in the real cost of aviation fuel, brought the NASA funded program to a halt.

In 1995, Allison tested a prototypelift fanfor theJoint Strike Fighter Program[6]and a LiftFan nozzle was tested in 1997 at NASA's Lewis facility.[7]By 1997, a complete prototype had been demonstrated[8]by the Rolls-Royce owned but American-controlled Allison Advanced Development Company.[9]

Automotive use[edit]

In 1965 a drag racer, Jim Lytle, created a car known asQuad Alwhich incorporated four World War II surplus V-12 Allison aero-engines in a four-wheel drive configuration, and developing approximately 12,000 hp (8,900 kW). Although its engines started, it never ran; the creator could not afford the custom gearboxes and clutches required to handle the enormous torque generated by the engines. The car survives, without its engines, inIndiana,USA.[10]

Acquisition by Rolls-Royce[edit]

In 1992 General Motors tried to sell Allison to concentrate on rebuilding automobile market share.[11]Rolls-Royce attempted to buy the company in 1993, but General Motors opted for a management buyout instead for $370 million.

In 1995 US authorities approved, with restrictions onJoint Strike Fighter Program,the purchase of Allison by Rolls-Royce.[9]The price was $525 million.[12]In the year 2000, some of these restrictions were alleviated,[13]and in 2001 the US government chose theF-35with Rolls-Royce LiftFan andPratt & Whitney F135engines.[14]

Products[edit]

Allison V-1710-7
Allison T56
Allison J35
Model name Configuration Power
Allison V-1710 V12 1,100 hp
Allison V-3420 W24 2,100 hp
Allison J33 Turbojet 3,900 lbf
Allison J35 Turbojet 5,600 lbf
Allison J71 Turbojet 10,000 lbf
Allison J102 Turbojet
Allison TF41 Turbofan 14,250 lbf
Allison AE 3007 Turbofan 7,580 to 9,500 lbf
Allison 250/T63 Turboshaft 317 hp
Allison AE 2100 Turboprop 4,637 hp
Allison T38 Turboprop 2,550 hp
Allison T40 Turboprop 5,100 hp
Allison T56 Turboprop 5,912 hp
Allison T61 Turboprop 6,500 hp
Allison T71
Allison T78 Turboprop 4,000 hp[15]
Allison T80[16]
Allison T406 Turboshaft 6,150 hp
Allison T701 Turboshaft 8,079 hp
Pratt & Whitney/Allison 578-DX Propfan 22,000 lbf

References[edit]

Footnotes[edit]

  1. ^According to the "Allison War Album" produced by the company and distributed to employees prior to the end of WWII (soon after D-Day), this was a steel-backed BRONZE (not lead) bearing. According to the company document, "A Liberty engine [the company had been engaged with rebuilding these for the Army] equipped with an experimental cooling system broke down after a 31-hour test stand run because of connecting rod bearing failure. The cause was discovered and a cure worked out in the form of a steel-backed bronze bearing. The excellence of the Allison bearing resulted in its wide use in such engines as those of Pratt & Whitney, Wright and the Rolls-Royce, and Allison became one of the leaders of the world in bearing manufacture." A by-product of this experience was the "development of a method of ultra-violet detection of defective bearing material, which won a special commendation from the U.S. Army." A copy of a Western Union telegraph from Brig General George C. Kenny, Materiel Div. Wright Field, citing this accomplishment also appears in the War Album.[3]

Notes[edit]

  1. ^abcWhitney, Daniel (1998).Vee's for Victory!: The Story of the Allison V-1710 Aircraft Engine 1929–1948.Atglen, Pennsylvania: Schiffer Publishing Ltd. pp. 11–14.ISBN0-7643-0561-1.
  2. ^abcdeJohn Leonard's articles in various issues of the Allison Branch newsletters[not specific enough to verify]
  3. ^Allison War Album.Allison Division, General Motors Corporation. pp. 8–9.Retrieved13 September2021.
  4. ^"Indianapolis Branch".Rolls-Royce.Archived fromthe originalon 12 November 2020.Retrieved13 September2021.
  5. ^Piot, D.K. (18 June 1981)."Powdered coal: auto firm tests its potential as a gasoline substitute".The Christian Science Monitor.Retrieved19 September2022.
  6. ^"-as Allison begins JSF lift-fan tests".FlightGlobal.21 May 1997. Archived fromthe originalon 2 November 2012.Retrieved13 September2021.
  7. ^Lam, David W. (15 April 1998)."Lift Fan Nozzle for Joint Strike Fighter Tested in NASA Lewis' Powered Lift Rig".NASA.Archived fromthe originalon 6 December 2013.Retrieved13 September2021.
  8. ^Bevilaqua, Paul."The shaft driven Lift Fan propulsion system for the Joint Strike FighterArchived2011-06-05 at theWayback Machine"page 2,American Helicopter Society (AHS) International.Presented May 1, 1997. DTIC.MIL Word document, 5.5 MB
  9. ^ab"DoD is satisfied that deal between Allison Engine Co. and Rolls-Royce does not endanger national security".U.S. Department of Defense.27 March 1995. Archived fromthe originalon 14 October 2013.Retrieved13 September2021.
  10. ^Wallace, Dave."The" Quad Al "Saga: Eight Slicks, Four-Wheel Drive, And One Murder".Drag Racing Online.Archived fromthe originalon 4 August 2013.Retrieved12 September2021.
  11. ^"Allison Gas Turbine Division History".FundingUniverse.Retrieved13 September2021.
  12. ^Lazonick, William; Prencipe, Andrea."Sustaining the Innovation Process: The Case of Rolls-Royce plc"(PDF).p. 18. Archived fromthe original(PDF)on 28 March 2016.Retrieved13 September2021.
  13. ^Lorell, Mark A.; Lowell, Julia; Moore, Richard M.; Greenfield, Victoria; Vlachos, Katia (2002)."Going Global?: U.S. Government Policy and the Defense Aerospace Industry"(PDF).Rand Corporation.RAND. p. 175.Retrieved13 September2021.
  14. ^Bolkcom, Christopher (16 June 2003)."Joint Strike Fighter (JSF) Program: Background, Status, and Issues"(PDF).Defense Technical Information Center.p. CRS-4.Archivedfrom the original on 2 December 2012.Retrieved12 September2021.
  15. ^Butz, J. S. (January 1964)."Tech Talk".Air Force Magazine.Vol. 47, no. 1. p. 73.Retrieved12 September2021.
  16. ^Meier, Nathan (21 March 2005)."Military Turboshaft/Turboprop Specifications".Jet Engine Specification Database.Archived fromthe originalon 5 July 2020.Retrieved12 September2021.

Bibliography[edit]

  • Whitney, Daniel (1998).Vee's for Victory!: The Story of the Allison V-1710 Aircraft Engine 1929–1948.Atglen, Pennsylvania: Schiffer Publishing Ltd.ISBN0-7643-0561-1.

External links[edit]