Jump to content

Applied Physics Laboratory

Coordinates:39°09′55″N76°53′50″W/ 39.16528°N 76.89722°W/39.16528; -76.89722
From Wikipedia, the free encyclopedia

Applied Physics Laboratory
Established1942
Research typeUnclassified / classified
Budget$2.09 billion[1]
DirectorDr.Ralph Semmel
Staff8700[2]
LocationLaurel,Maryland,U.S.
Operating agency
Johns Hopkins University
Websitewww.jhuapl.edu

TheJohns Hopkins University Applied Physics Laboratory(or simplyApplied Physics Laboratory,orAPL) is a not-for-profituniversity-affiliated research center(UARC) inHoward County, Maryland.It is affiliated withJohns Hopkins Universityand employs 8,700 people as of 2024.[2]APL is the nation's largestUARC.[3]

The lab serves as a technical resource for theDepartment of Defense,NASA,and other government agencies. APL has developed numerous systems and technologies in the areas of air and missile defense, surface and undersea naval warfare,computer security,and space science and spacecraft construction.[4]While APL provides research and engineering services to the government, it is not a traditionaldefense contractor,as it is a UARC and a division of Johns Hopkins University. APL is a scientific and engineering research and development division, rather than an academic division, of Johns Hopkins.

Hopkins'Whiting School of Engineeringoffers part-time graduate programs for Lab staff members through its Engineering for Professionals program. Courses are taught at seven locations in theBaltimore-Washington Metropolitan Area,including the APL Education Center.[5]

History[edit]

APL was created in 1942 during World War II under the Office of Scientific Research and Development's Section T[6]as part of the Government's effort to mobilize the nation's science and engineering expertise within its universities. Its founding director wasMerle Anthony Tuve,who led Section T throughout the war. Section T was created on August 17, 1940.[7]According to the official history[8]of the Office of Scientific Research and Development,Scientists Against Time,APL was the name of Section T's main laboratory from 1942 onward, not the name of the organization overall.[9]Section T's Applied Physics Laboratory succeeded in developing thevariable-time proximity fuze[10]that played a significant role in the Allied victory.[11]In response to the fuze's success, the APL created the MK 57 gun director in 1944. Pleased with the APL's work, the Navy then tasked it with the mission to find a way to negate guided missile threats. From there on, the APL became very involved in wartime research.[12]Expected to disband at the end of the war, APL instead became heavily involved in the development of guided missile technology for the Navy. At governmental request, the University continued to maintain the Laboratory as a public service.

APL was originally located inSilver Spring, Marylandin a used-car garage[13]at the Wolfe Building at 8621 Georgia Avenue.[14][15]APL began moving to Laurel in 1954, with the construction of a two million dollar building and a $700,000 wing expansion in 1956.[16]The final staff transitioned to the new facility in 1975.[13][17]Before moving to Laurel, APL also maintained the "Forest Grove Station," north of Silver Spring on Georgia Avenue near today'sForest Glen Metro,[18]which included a hypersonic wind tunnel. The Forest Grove Station was vacated and torn down in 1963 and flight simulations were moved to Laurel. In the 1960s, APL built a mobile automaton called theJohns Hopkins Beast.

The Laboratory's name comes from its origins in World War II, but APL's major strengths aresystems engineeringand technology application. More than three-quarters of the staff are technical professionals, and 25% havecomputer scienceand math degrees. APL conducts programs in fundamental and applied research; exploratory and advanced development; test and evaluation; and systems engineering and integration.

Wartime contributions[edit]

During the 1950s and the 1960s APL worked with the US Navy in theOperation BumblebeeProgram on theTalos missile,Tartar missile,Terrier, andRIM-2 TerrierSurface to Air Missile systems. The follow-onRIM-50 TyphonMissile Project, based on improved Talos and Tartar Missiles, while successful, was cancelled in 1963 due to high costs and was eventually developed into the now well-knownAegis Combat Systembased on an improved Terrier.

In 1990, APL became involved withOperation Desert Stormand was involved in theGulf Crisis Room[clarification needed]among other efforts. In the same decade (1992), APL, along with Johns Hopkins University, developed an algorithm that allowed for automatic mammogram analysis.[12]

Pershing[edit]

In 1965, the US Army contracted with APL to develop and implement a test and evaluation program for thePershing missilesystems.[19]APL developed the Pershing Operational Test Program (OTP), provided technical support to thePershing Operational Test Unit(POTU), identified problem areas and improved the performance and survivability of the Pershing systems.[20]

Campus[edit]

The modern Applied Physics Laboratory is located inLaurel, Maryland,and spans 461 acres with more than 30 buildings on site. Additional auxiliary campuses exist in the surrounding areas.[21]The campus includes multiple cutting-edge innovation and collaboration spaces as well as state-of-the-art labs and test facilities.[22]

In 2021, APL opened an interdisciplinary research center, known as Building 201, with 263,000 square feet of space, a 200-person auditorium and more than 90,000 square feet of specialized laboratory space.[3]The building also includes a four-story atrium filled with natural light, a STEM Center and a combination of 100 huddle, conference and auditorium breakout rooms.[23]

APL hired its first full-time sustainability manager in 2022.[24]

Education and internships[edit]

APL is also home to a Johns Hopkins graduate program in engineering and applied sciences, called Engineering for Professionals.[25]Courses are taught at seven locations in theBaltimore-Washington Metropolitan Area,including the APL Education Center.[5]

APL'sSTEMincludes several internships and programs, including the Maryland MESA program, which is an after-school program for students in grades 3-12; APL STEM in the Community, which focuses on STEM community outreach; the STEM Academy, which is an after-school course program for middle and high school students (grades 8-12); and APL's Student Program to Inspire, Relate and Enrich (ASPIRE), which allows high school juniors and seniors to experience and explore STEM careers before college.[26][27]

Research[edit]

As of APL's 80th anniversary in 2022, there were hundreds of projects spanning the Lab's 12 mission areas, that focus on solving complex research, engineering and analytical problems that present critical challenges to the United States.[28]Projects span from those in APL's more traditional areas of work, including air and missile defense, undersea warfare, to newer projects such as homeland security, artificial intelligence and cyber operations.[12]

APL has a list of 12 "Defining Innovations," which include the Lab's game-changing breakthroughs in technology that have created inflection points in history, including theProximity fuze,Transit,Tomahawkand theDouble Asteroid Redirection Test(DART).[29]

Defense[edit]

TheU.S. Navycontinues to be APL's primary long-term sponsor. The Laboratory performs work for theMissile Defense Agency,theDepartment of Homeland Security,intelligence agencies, the Defense Advanced Research Projects Agency (DARPA), and others. The Laboratory supports NASA through space science,spacecraftdesign and fabrication, and mission operations. APL has made significant contributions in the areas of air defense, strike and power projection,submarinesecurity, antisubmarine warfare, strategic systems evaluation, command and control, distributed information and display systems, sensors, information processing, and space systems.

Space[edit]

Alan Sterncelebrating the successful flyby of thePlutosystem byNew Horizonsin 2015 in the APL Mission Operations Center.

APL has built and operated many spacecraft, includingthe TRANSIT navigation system,Geosat,ACE,TIMED,CONTOUR,MESSENGER,Van Allen Probes,[30]theNew Horizonsmission toPluto,theParker Solar Probemission to the outer corona of the Sun,[31]andSTEREO.[30]

In the early 1990s APL began building roboticspace probes.It won the contract to build NEAR for one third the price thatJet Propulsion Laboratory(JPL), NASA's traditional supplier, estimated. APL's bid caused NASA to create theDiscovery Programto solicit competing proposals for other missions. In 2019, the APL-proposedDragonflymission was selected as the fourth NASANew Frontiers mission.[32][33]Dragonfly is a relocatable lander in an X8 octocopter configuration that will explore Saturn's moonTitanby flying between landing sites to move around the moon's surface. In November 2021, APL launched theDouble Asteroid Redirection Test(DART) mission, which struck the smaller body of a binary asteroid system in September 2022 and was the first NASA planetary defense mission.[34]

Theasteroid132524 APLwas named in honor of APL after a flyby by theNew Horizonsspacecraft.

Prosthetics[edit]

In 2014, APL made history with the successful use of the Modular Prosthetic Limb — a fully artificial articulated arm and hand — by a bilateral shoulder-levelamputee.APL used pattern recognition algorithms to track which muscles were contracting and enable the prosthetics to move in conjunction with the amputee's body.[35]

Similar technology was used in 2016 for a demonstration in which a paralyzed man was able to "fist-bump"Barack Obamausing signals sent from an implantedbrain chip.[36]The limb returned sensory feedback from the arm to the wearer's brain. In 2023, APL announced that researchers have developed one of the world's smallest, most intense and fastest refrigeration devices, the wearable thin-film thermoelectric cooler (TFTEC), and teamed with neuroscientists to help amputees perceive a sense of temperature with their phantom limbs.[37]The technology won an R&D 100 award in 2023.[38]

Drones[edit]

APL researches and producesunmanned aerial vehiclesfor the US military.[39]One of its most recent projects is an unmanned aerial swarm that can be controlled by a single operator on the ground.[40]

See also[edit]

References[edit]

  1. ^"2022 Annual Report"(PDF).Johns Hopkins University Applied Physics Laboratory.RetrievedJanuary 6,2024.
  2. ^ab"About APL".Johns Hopkins University Applied Physics Laboratory.RetrievedJanuary 6,2024.
  3. ^abHogan, Governor Larry (October 20, 2021)."Gov. Hogan Celebrates Grand Opening Of New Research Facility At Johns Hopkins University Applied Physics Laboratory".The BayNet.RetrievedAugust 29,2023.
  4. ^"About APL".Archived fromthe originalon January 20, 2016.RetrievedJanuary 17,2016.
  5. ^ab"APL Education Center".Johns Hopkins University Applied Physics Laboratory. Archived fromthe originalon April 20, 2013.RetrievedOctober 15,2008.
  6. ^Baxter, James Phinney (1946).Scientists Against Time.Little, Brown.ISBN9780598553881.
  7. ^Holmes, Jamie (2020).12 Seconds of Silence: How a Team of Inventors, Tinkerers, and Spies Took Down a Nazi Superweapon.Houghton Mifflin Harcourt. p. 44.ISBN978-1-328-46012-7.
  8. ^"Records of the office of Scientific Research and Development".National Archives.August 15, 2016.RetrievedSeptember 1,2020.
  9. ^Baxter, James Phinney (1946).Scientists Against Time.Little, Brown. p. 230.ISBN9780598553881.
  10. ^Simpson, Joanne (April 2000)."The Funny Little Fuze with Devastating Aim".Johns Hopkins Magazine.Johns Hopkins University.
  11. ^"Our History".JHU APL.Johns Hopkins University. Archived fromthe originalon October 15, 2013.RetrievedMarch 12,2015.
  12. ^abc"APL at 70".JHU APL.2012. Archived fromthe originalon October 15, 2013.RetrievedMarch 12,2015.
  13. ^abwww.jhuapl.eduhttps://web.archive.org/web/20060911232526/http://www.jhuapl.edu/techdigest/td2104/hagler.pdf.Archived fromthe original(PDF)on September 11, 2006.{{cite web}}:Missing or empty|title=(help)
  14. ^McCoy, Jerry A; Society, Silver Spring Historical (November 2005).Historic Silver Spring.Arcadia.ISBN978-0-7385-4188-4.
  15. ^Gibson, R. E."Reflections on the Origin and Early History of the Applied Physics Laboratory"(PDF).jhuapl.edu.
  16. ^"Johns Hopkins Lets Contract in Md".The Washington Post.March 27, 1955.
  17. ^The Johns Hopkins Gazette: March 25, 2002
  18. ^Google Maps
  19. ^Mentzer Jr., William R. (1998)."Test and Evaluation of Land-Mobile Missile Systems"(PDF).Johns Hopkins APL Technical Digest.Johns Hopkins University. Archived fromthe original(PDF)on March 4, 2016.RetrievedDecember 2,2014.
  20. ^Lyman, Donald R. (May–June 1977)."POTU: Testing Pershing in Europe and CONUS"(PDF).Field Artillery Journal:15–17.
  21. ^"About:JHU|APL".
  22. ^"Labs and Facilities | Johns Hopkins University Applied Physics Laboratory".www.jhuapl.edu.RetrievedAugust 29,2023.
  23. ^"Johns Hopkins APL Ushers in New Era of Innovation, Collaboration and Research Capabilities | Johns Hopkins University Applied Physics Laboratory".www.jhuapl.edu.RetrievedAugust 29,2023.
  24. ^"First Full-Time Sustainability Manager Hired at APL"(PDF).Johns Hopkins University 2023 Sustainability Report:15. 2023.
  25. ^"JHU Graduate Program in Engineering and Applied Sciences".JHU APL.Archived fromthe originalon April 20, 2013.RetrievedMarch 24,2015.
  26. ^"STEM".secwww.jhuapl.edu.RetrievedAugust 29,2023.
  27. ^"At Applied Physics Lab in Laurel, a Howard engineer has a mission to connect kids of color, girls with STEM".Baltimore Sun.February 26, 2020.RetrievedAugust 29,2023.
  28. ^"Johns Hopkins APL Rings in 80 Years".JHUAPL.RetrievedDecember 21,2022.
  29. ^"Defining Innovations".www.jhuapl.edu.RetrievedDecember 21,2022.
  30. ^ab"Space Press Releases".JHU APL.RetrievedMarch 12,2015.
  31. ^"Parker Solar Probe: A Nasa Mission to Touch the Sun".JHU APL.March 18, 2014.RetrievedAugust 18,2017.
  32. ^NASA selects Titan drone for next New Frontiers mission.Jeff Foust,Space News.June 27, 2019. Retrieved July 6, 2019.
  33. ^NASA's Dragonfly Will Fly Around Titan Looking for Origins, Signs of Life.NASA.June 27, 2019. Retrieved July 6, 2019.
  34. ^https://dart.jhuapl.edu/Double Asteroid Redirection Test project site
  35. ^"Amputee Makes History with APL's Modular Prosthetic Limb".JHU APL.December 16, 2014. Archived fromthe originalon December 5, 2017.RetrievedMarch 12,2015.
  36. ^"Watch Obama fist bump a robotic arm powered by a brain chip".NBC News.RetrievedJuly 21,2018.
  37. ^Ford, Celia."How to Make Bionic Limbs (Literally) Very Cool".Wired.ISSN1059-1028.RetrievedAugust 29,2023.
  38. ^Heney, Paul (August 22, 2023)."R&D 100 Winners for 2023 are announced".Research & Development World.RetrievedAugust 29,2023.
  39. ^"Drone Research and Robotic Warfare: The Hopkins Connection".Today's Announcements.Johns Hopkins University. April 20, 2012.RetrievedAugust 13,2012.
  40. ^Manufacturing Group (August 13, 2012). "Demonstrating Expanded Control of UAV Swarm".Aerospace Manufacturing and Design.Boeing and the Johns Hopkins University Applied Physics Laboratory (JHU/APL) have demonstrated that an operator on the ground, using only a laptop and a military radio, can command an unmanned aerial vehicle (UAV) "swarm". Despite limited flight training, the operator was able to connect with autonomous UAVs, task them and obtain information without using a ground control station. [...] The demonstrations are conducted under a collaborative agreement between Boeing and JHU/APL, a University Affiliated Research Center and a division of Johns Hopkins University that has been addressing critical national challenges through the innovative application of science and technology for nearly 70 years. It maintains a staff of about 5,000 on its Laurel, Maryland, campus.

39°09′55″N76°53′50″W/ 39.16528°N 76.89722°W/39.16528; -76.89722