Jump to content

Asteroidal water

From Wikipedia, the free encyclopedia

Asteroidal wateriswater[1][2][3]or water precursor deposits such ashydroxide(OH[4]) that exist inasteroids(i.e.,small Solar System bodies(SSSBs) not explicitly in the subcategory ofcomets).[5]The "snow line"of the Solar System lies outside of the mainasteroid belt,and the majority of water is expected inminor planets(e.g.Kuiper belt objects(KBOs) andCentaurs). Nevertheless, a significant amount of water is also found inside the snow line, including innear-earth objects(NEOs).

The formation of asteroidal water mirrors that of water formation in the Solar System, either from transfer via bombardment, migration, ejection, or other means. Asteroidal water has recently been pursued as a resource to supportdeep space explorationactivities, for example, for use as arocket propellant,human consumption, or for agricultural production.

History

[edit]

Meteorites

[edit]

Since the early 1800s, meteorites have been assumed to be "space rocks", not terrestrial or atmospheric phenomena. At this time, asteroids were first discovered, then in increasing numbers and categories.

Many meteorites show signs of previous water. Thepetrological scale,numbered 1 through 7, indicates increasing aqueous alteration from type 2 to 1. Signs of water include phyllosilicates ( "clay" and serpentinites), sulfides and sulfates, and carbonates,[6]as well as structural signs:veins,[7][8]and alteration or total erasure of individualchondrules.[9][10]

Some meteorites, particularly theCI class,[11]currently contain water.[12]As these include bothfinds(with their Earth entry and impact unobserved) andfalls(meteorites from a known, recentmeteorevent), that water cannot be entirely terrestrial contamination. As the precision ofisotopic abundanceanalyses grew, they confirmed that meteorite water differs from Earth water.[13]As water at Earth (especially its atmosphere) iswell-mixed,significantly different isotope levels would indicate a separate water source.

Water content of the CI andCMtypes are often in double-digit percentages.

Much telescopic observation and hypothesizing attempted to link meteorite classes to asteroid types.[14]TheGalileoandNEARmissions then establishedS-typeasteroids as the parent bodies ofordinary chondrites;theDawnmission confirmed hypotheses that4 Vestawas theHEDparent. Ongoing projects are sending spacecraft to C-,[15][16]M-, D-,[17]and P-type bodies.

Versus comets

[edit]

The planets, and to an extent theasteroid belt,were previously held to bestatic and unchanging;the belt was a former or stalled planet.

In the late 1860s,Hubert NewtonandGiovanni Schiaparellisimultaneously showed that meteor showers (and by implication, meteorites) were comet debris.

After the discovery of manynear-Earth asteroids,not in the belt, it was apparent they had planet-crossing, unstable orbits. Their number could not have survived from the Solar System's formation, and required replenishment from some other population. Some, such asOpikandWetherill,hypothesized that most or all NEOs were actuallyextinctordormantcomets, requiring no ejection process from the main belt. The comets' orbits had become more circular after encounters with planets, possibly augmented by comet jetting.Centaurs,too, required some similar model.

A growing understanding ofSolar System dynamics,including more observations, of more bodies, replicated by fastercomputer models,eliminated this requirement.Kirkwood Gapswere evidence of loss from the main belt, viaresonanceswith the planets. Later, theYarkovsky effect,insignificant to a planet, could augment mechanisms.

Empirically,meteor camerasbegan tracing meteor trajectories, which led back to the asteroid belt. ThePříbram(1959),Lost City(1970), andInnisfree(1977) meteorites had arrived viaApollo-like, belt-tangent orbits. Even afterward, some maintained that comets best explained carbonaceous chondrite meteorites[18][19]or even ordinary chondrites.[20]

As comets

[edit]

The issue of asteroids versus comets reemerged with observations of active asteroids- that is, emission from small bodies in what were considered asteroidal orbits, not comet-like orbits (higheccentricityandinclination). This includes both Centaurs, past the snow line, and main belt objects, inside the line and previously assumed dry. Activity could, in some cases, be explained by ejecta, escaping from an impact. However, some asteroids showed activity atperihelion,then at subsequent perihelia. The probability of impacts with this timed pattern wasconsidered unlikely versusa model of comet-like volatile emissions.

Observations of theGeminid meteor showerlinked it to(3200) Phaeton,a body in a cometary orbit but with no visible coma or tail, and thus defined as an asteroid. Phaeton was arock comet,whose emissions are largely discrete particles and not visible.

Observations of (1) Ceres emitting hydroxide (OH), the product ofwater after exposureto the Sun's ultraviolet levels, were further evidence. Ceres is well within the snow line, exposed to ultraviolet, and Cererean water was considered speculative, at least on its surface.

TheIAUGeneral Assembly of 2006 addressed this issue. Overshadowedby Plutowas the creation ofSmall Solar System Body(SSSB), a category needing no comet-asteroid distinction, nor establishment/disestablishmentof volatile emission.

Hydrology and morphology

[edit]

Micro- and nanoscale water occurs asfluid inclusionsin both carbonaceous[8]and ordinary[21]chondrites. However, as "bubble" diameters decrease, search costs increase geometrically. Their characterization is at the state of the art for most analytical techniques,[22]and the method had seen slow progress to this point.[23]Independently-confirmedfluid inclusions are, at minimum, Peetz[24]and Jilin,[25]with many other reports.[26][27]

Minerals which appear waterlessto the eye or handmay nevertheless be hydrated. Unfrozen water consists of molecular layers (one to possibly fifteen molecules thick[28]) bound to, and kept from crystallizing by the equal or stronger attraction of the mineral ofadsorption.[9][10][6]

Water can persist at higher temperatures than normal in the form of hydrated minerals: those minerals which can bind water molecules at the crystalline level. Salts, includinghalite(table salt, NaCl) are ionic and attract individual,polarwater molecules with electrostatic forces. Alternately, the parent mineral may be e. g., sulfate, and that mineral may retain hydroxide (OH). When freed from the crystal structure, hydroxide reverts to water and oxygen. These are considered water, in the usage of geochemistry and Solar System science.[29][30][31]

Short of this binding, a surface may retain a monolayer or bilayer of water molecules or hydroxide. Phyllosilicate minerals assemble into microscopic plates, sheets, or fibers, rather than bulk crystals. The layers trap water between them; the large surface area created can hold much water. This is also considered water, in thegeotechnical,geochemical, and astronomical usages.[32][33][34]

On an even finer level, most rocks are silicates, or in some cases metal oxides, containing an oxygen fraction. Hydrogen content, as substitutions or interstitials, can react with oxygen (displacing its existing cation) to form hydroxide or water. Thesolar windis areducingenvironment, containing hydrogen atoms and protons (effectively hydrogen, in the form ofhydrogen nuclei).[35]Either may be implanted into exposed surfaces, as the small hydrogen atom ishighly soluble.A lesser contribution may come from the proton component ofcosmic rays.Bothpyroxeneandolivine,common asteroid minerals, can hydrate in this manner. This, too, is considered water within the geochemistry and geophysics fields.[36][37][38]

Solar System science andasteroid miningascribe hydrated minerals as containing water,[4][39]in a similar sense asice giant.[40]

On a macroscopic scale, some thickness of crust may shelter water from evaporation, photolysis and radiolysis, meteoric bombardment, etc. Even where a crust does not originally exist, impurities in ice may form a crust after its parent ice escapes: a lag deposit.

On a geologic scale, the larger asteroids can shield water, phyllosilicate, ice, etc. contents in their interiors via a high thermal mass. Below some depth, the diurnal temperature variation becomes negligible, and the effect of solar insolation- a daytime temperature peak- does not boil out water. A lowobliquityhelps; while the tropics take solar insolation, two polar regionsseelittle sunlight and can help maintain a low average temperature.

Water parent materials

[edit]

Phyllosilicates

[edit]

CI meteorites are mostly phyllosilicates. The phyllosilicatesserpentinite,montmorilloniteandsaponite(clay),tochilinite,[6]chamosite,cronstedtite,and mica have been identified in meteorites.

Sulfates and sulfides

[edit]

Sulfur is found in meteorites; it has a fairly highcosmic abundance.The abundance in common (chondrite) meteorites is greater than that in Earth's crust; as adifferentiated body,our crust has lost some sulfurto an iron core,and someto spaceas hydrogen sulfidegas.The element is present in all meteorites; carbonaceous chondrites and enstatite chondrites in particular have higher sulfur contents than the ordinary chondrites. In C1 and C2 chondrites, sulfur is found predominantly as free sulfur, sulfate minerals, and in organic compounds at a net 2–5 percent.[41]A slight enrichment is due to cosmic-ray produced S36 and S33.[42]

Sulfur-bearing, hydrated minerals identified via meteorites includeepsomite,bloedite,gypsum/bassanite,andjarosite.

Carbonate

[edit]

As the name implies, carbonaceous chondrites formed with chondrules and carbon. The carbonateswhewellite/vaterite,hydromagnesite,calcite/dolomite,aragonite,andbreunneritehave been found in meteorites.

By meteorite classification

[edit]
Type 1 2 3 4 5 6
Overall Texture No chondrites Very sharply defined chondrites Very sharply defined chondrites Well-defined chondrites Chondrites readily delineated Poorly defined chondrites
Texture of matrix All fine-grained, opaque Much opaque matrix Opaque matrix Transparent, micro-crystalline matrix Recrystallized matrix Recrystallized matrix
Bulk carbon content ~2.8% ~0.6–2.8% ~0.2–1.0% <0.2% <0.2% <0.2%
Bulk water content ~20% ~4-18% <0.2% <0.2% <0.2% <0.2%

-Petrological Scale (Van Schmus, Wood 1967). Since this time, a type seven has been added.

This taxonomy was preceded (Wiik 1956: Type I 20.08% water, Type II 13.35% water[43]) and followed (Keil 1969,[44]Mason 1971[45]), with allin general agreementon these levels.

Meteorites are valuableground truth.Studies, such asneutron activation analysis,can be performed without the mass and volume constraints of space flight. Meteorites also sample multiple depths of their parent bodies, not just dehydrated crusts orspace-weatheredrinds.

Yet meteorites are not sufficient. The body of meteoritics isdominated by durable examples,[46][47]and deficient in classes andsubclasses;[48]one or more types may be missing entirely.[49]Earth entry andexposuremay then alter or remove some materials, while contaminating others.[23][50]Such meteorites have speculative or unknown parent bodies, and no wider context of the sample versus the rest of that parent body.[2]

Carbonaceous chondrites

[edit]

Different carbonaceous chondrites show different signs of water, including extant water.[51][52]Identifying parent bodies for CC meteorites is an ongoing subject, but they are generally held to be the low-albedobodies: the C-complex (C-, B-, F-, G-, and D/P-types).[53][54]

As darker bodies, generally farther out in the asteroid belt (or beyond) than the S-types, these are more difficult to study. Carbonaceous materials have flatter, less revealing spectra. CC parentage is also complicated by space weathering. C-complex bodies weather to different types and degrees than the silicate (S-type, and lunar) surfaces.

CI chondrites
[edit]

The rare CI chondrites are so severely altered by water, they consist predominantly (~90%) of phyllosilicate matrix; chondrules are entirely dissolved, or very faint. All are type 1 (CI1), per the above scale.Berzeliusfirst reported clay in theOrgueil meteorite,causing him to at first doubt it was extraterrestrial.

On a macroscopic scale, CI material is layeredserpentinite/saponite.Microscopically, CI material appearance was first described as "spinach."[6][55]These layers trap significant amounts of water; CI hydration is over 10%, at times ~20%.

As phyllosilicates are brittle, they are less likely to survive Earth entry and impact. Being water-soluble, they are unlikely to survive exposure, and there were no CI finds until theAntarctic meteoriteera.

CM chondrites
[edit]

CM meteorites loosely resemble CI, but altered to lesser extents. More chondrules appear, leaving less matrix. Accordingly, they are more mineralized and less hydrous. CMs are often, but not always, petrologic type 2.Cronstedtitetends to replace saponite, though as the most common CC subclass, properties range widely.[8][56][57][58]

CR chondrites
[edit]

CR meteorites loosely resemble CM, but appear to have formed in a reducing environment, not an oxidizing one. It is held that they formed in a similar manner but different zone of the Solar System than CMs. Water content is lower than in CM; still, serpentinites, chlorite, and carbonates appear. GRO 95577 and Al Rais meteorites are exceptional CRs.[59][60]

CV chondrites
[edit]

The CV chondrites show signs of prior water. However, surviving water is low.[61][62]

Ordinary chondrites

[edit]

Though clearly drier, ordinary chondrites nevertheless show trace phyllosilicates. The Semarkona meteorite is an exceptionally wet OC.[63]Salts (haliteand the relatedsylvite) carrybrineinclusions; while the community first posited that the salts must be exogenous, the issue is ongoing.[64][21]In parallel, OC minerals show evidence of water formations.[65][66][67]

The parents of OCs are generally taken as the S-type asteroids.

R chondrites
[edit]

R chondrites containamphiboleminerals, and lesserbiotitesandapatites.As with the other classes and subclasses, the R chondrites show clasts of foreign materials, including phyllosilicate (water-bearing serpentinite-saponite) inclusions.[68]The LAP 04840 and MIL 11207 meteorites are particularly hydrous R chondrites.[69][70]

Achondrite meteorites

[edit]
HED meteorites
[edit]

Like ordinary chondrites, the HEDs (howardites, eucrites, and diogenites) were assumed to have formations and histories that would prevent water contents. Actual measurements of clasts and elements indicate the HED parent body received carbonaceous chondrite materials, including their water.[71][72]

The parent body of HEDs is a V-type asteroid, of which (4) Vesta is widely assumed.

Angrite meteorites
[edit]

Like ordinary chondrites, theangriteswere assumed to have formations and histories that would prevent water contents. Actual measurements of clasts and elements indicate the angrite parent body received carbonaceous chondrite materials, including their water.[73][74]

Micrometeorites and dust particles
[edit]

The smallest solid objects can have water. At Earth, falling particles returned by high-altitude planes and balloons show water contents. In the outer Solar System, atmospheres show water spectra where water should have been depleted. The atmospheres of giant planets and Titan are replenished by infall from an external source.Micrometeoritesandinterplanetary dust particlescontainH
2
O
,some CO, and possibly CO2.[75][76][77]

It was assumed that monolithic minerals are asteroid debris, while dust particles, with a "fluffy", fractal-like aggregated structure, were assumed to be cometary. But these micro-impactors have asteroid-like isotopic ratios, not comet-like.[63][78][79]

Via remote sensing

[edit]

Visible/near-infrared spectroscopy

[edit]

The spectrum of water and water-bearing minerals have diagnostic features. Two such signs, in the near-infrared, extending somewhat into visible light, are in common use.

Water, hydroxyl, and some hydrated minerals have spectral features at wavelengths of 2.5–3.1 micrometers (um). Besides fundamental lines or bands is an overtone of a longer-wave (~6 um) feature. Wavelengths may shift in mineral combinations, orwith temperature.The result is a wide absorption band in the light reflecting from such bodies.[33][80][81]

Asteroid (162173) Ryugu, the target of the Hayabusa 2 mission, is expected to be hydrated where (25143) Itokawa was not. Hayabusa 1's NIRS (Near-Infrared Spectrometer) design was then shifted from its maximum wavelength of 2.1 um,[82]to Hayabusa 2's NIRS3 (1.8-3.2 um), to cover this spectral range.[83]

An absorption feature at ~0.7 micrometer is from the Fe2+ to Fe3+ transition, in iron-bearing phyllosilicates.[84][85]The 0.7 um feature is not taken as sufficient. While many phyllosilicates contain iron, other hydrated minerals do not, including non-phyllosilicates. In parallel, some non-hydrated minerals have absorption features at 0.7 um. The advantage of such observing is that 0.7 um is in the sensitivity range of common silicon detectors, where 3 um requires more exotic sensors.

Other spectral ranges

[edit]

Lesser signs of water includeultraviolet/visible(OH 0-0, 308 Å[86]), mid-infrared,[87]and longer.

Neutron spectroscopy

[edit]

The hydrogen nucleus- oneproton- is essentially the mass of oneneutron.Neutrons striking hydrogen then rebound with a characteristic speed. Suchthermal neutronsindicate hydrogen versus other elements, and hydrogen often indicates water. Neutron fluxes are low, so detection from Earth is infeasible. Even flyby missions are poor; orbiters and landers are needed forsignificantintegration times.

Direct imaging

[edit]

Most small bodies aredots or single pixelsin most telescopes. If such a bodyappears asan extended object, a coma of gas and dust is suspected, especially if it shows radial falloff, a tail, temporal variation, etc. Though other volatiles exist, water is often assumed to be present.

Native ice is difficult to image. Ice, particularly as small grains, is translucent, and tends to be masked by a parent material, or even sufficient levels of some impurities.

Sample science

[edit]

A sample in hand can be checked for fluid inclusions ( "bubbles" )[64][8]versus remote sensing, or even contact science; most volatiles are lost at a depth greater than theskin depth.Near- and mid-IR spectroscopy are also easier at benchtop range. Other measurements of water includenuclear magnetic resonance(NMR),nanoSIMS;energy dispersive X-ray spectroscopy (EDS),and eventuallythermogravimetric analysis(TGA)- driving off any water content.

Examples

[edit]

(2060) Chiron

[edit]

The Centaur2060 Chiron,in a generally circular orbit, was assumed to be asteroidal, and given anasteroid number.However, at its first perihelion since its discovery and presumably warmer, it formed a coma, indicating loss of volatiles like a comet.

Mercury polar deposits

[edit]

Asteroidal impacts have sufficient water to form Mercury's polar ices, without invoking comets. Any cometary water (including dormant, transitional objects) would be additional.[88][89]Not only are asteroids sufficient, but micrometeoroids/dust particles have the required water content; conversely, many of the asteroids in Mercury-crossing orbits may actually be defunct comets.[90]

Earth/Moon system

[edit]

Claimed water at the lunar poles was, at first, attributed to comet impacts over the eons. This was an easy explanation. Subsequent analyses, including analyses of Earth-Moon isotopes versus comet isotopes, showed that comet water does not match Earth-Moon isotopes, while meteoritic water is very close.[53][91][92][93]The cometary water contribution may be as little as zero.[94]At Earth's Moon, comet impact velocities are too high for volatile materials to remain, while asteroid orbits are shallow enough to deposit their water.[95][96]Traces of carbonaceous chondrites- and thus, water- are observable in lunar samples.[97]Only a small portion (if any) of comets contributed to the volatile content of the inner Solar System bodies.[73][98]

(24) Themis

[edit]

Water onThemis,an outer-belt object, was directly observed. It is hypothesized that a recent impact exposed an ice deposit.[99][100]Other members of theThemis family,likely fragments of Themis itself or a larger parent now lost, also show signs of water.[101][102][103]

Active asteroidsElst-Pizarro,(118401)1999 RE70,[104]and possibly 238P/Read[105]are family members.

(65) Cybele

[edit]

As with Themis,Cybeleis an outer-belt, C-type or C-complex object at which a spectra of volatiles has been observed.[99][106]

(4) Vesta

[edit]

Vestawas thought to be dry; it is in an inner, warmer zone of the asteroid belt, and its minerals (identified by spectroscopy) hadvolcanic originswhich were assumed to have driven off water. For the Dawn mission, it would serve as a counterexample to hydrated (1) Ceres. However, at Vesta, Dawn found significant water. Reddy estimates the total Vestan water at 30 to 50 times that of Earth's Moon.[107]Scully et al. also claim that slumping on Vesta indicates the action of volatiles.[108]

(1) Ceres

[edit]

The Herschel telescope observed far-infrared emission spectra fromCeresindicating water loss. Though debatable at the time, the subsequent Dawn probe would use a different method (thermal neutrons) to detect subsurface hydrogen (in water or ammonium[109]) at high Cererean latitudes, and a third method (near-infrared spectra) for likely local emissions. A fourth line of evidence, relaxation of large craters, suggests a mechanically weak subsurface such as frozen volatiles.

The featureAhuna Monsis most likelycryovolcanic:a Cerereanpingo.

(16)Psyche

[edit]

Psyche,despite being anM-type asteroid,shows the spectral signs of hydrated minerals.[110]

(25143) Itokawa

[edit]

Water has been found in samples retrieved by theHayabusa 1 mission.Despite being an S-type near-Earth asteroid, assumed dry,Itokawais hypothesized to have been "a water-rich asteroid" before itsdisruption event.This remaining hydration is likely asteroidal, not terrestrial contamination. The water shows isotopic levels similar to carbonaceous chondrite water,[111]and the sample canister was sealed with double O-rings.[112][113]

(101955) Bennu

[edit]

Maltagliati proposed thatBennuhas significant volatiles content, similar to Ceres.[114]This was confirmed in the mechanical sense, with activity observed in separate events, not associated with impacts.[115][116]

TheOSIRIS-RExspacecraft, on arriving at Bennu, found its surface to be mostly phyllosilicates[117]that hold water.[118][119]

(162173) Ryugu

[edit]

Ryugu, the target of theHayabusa2mission, showed activity which may be an impact, escape of volatiles, or both.[120]

Hayabusa2,after an initial calibration adjustment, confirmed "The decision to choose Ryugu as the destination, based on the prediction that there is some water, was not wrong" (-Kohei Kitazato[121]).[122]

Indirect candidates

[edit]

Jupiter trojans

[edit]

The snow line of this system is inside of Jupiter, making theJupiter Trojanslikely candidates for high water contents. Yet few signs of water have been found inspectroscopes.The hypothesis is that, past the snow line on a small body, such water is bound as ice. Ice is unlikely to participate in reactions to form hydrated minerals, or to escape as water/OH, both of which are spectrally distinct where solid ice is not.

The exception is617 Patroclus;it may also have formed farther out, then been captured by Jupiter.

2 Pallas

[edit]

Broadly similar to Ceres,2 Pallasis a very large SSSB in the cooler, middle main belt. While the exact typing of Pallas is somewhat arbitrary, it, like Ceres, is not S-, M-, or V-type. The C-complex bodies are considered more likely to contain significant water.[123][124]

Dormant comets

[edit]

The category ofDamocloidsis defined as high-inclination, high-eccentricity bodies with no visible activity. In other words, they appear asteroid-like, but travel in cometary orbits.

107P/Wilson-Harringtonis the first unambiguous ex-comet. After its 1949 discovery, Wilson-Harrington was not observed again in what should have been perihelion passages. In 1979, an asteroid was found and given the provisional designation 1979 VA, until its orbit could be determined to a sufficient level. That orbit matched that of comet Wilson-Harrington; the body is nowdual-designatedas (4015) Wilson-Harrington, too.

Other candidates include944 Hidalgo,1983 SA,(2101) Adonis,(2201) Oljato,(3552) Don Quijote

Weak comets, perhaps not to the stage of Wilson-Harrington, includeArend-RigauzandNeujmin 1.

(4660) Nereus,the original target of theHayabusamission, was selected both for its very accessible orbit, and the possibility that it is an extinct or dormant comet.

331P/Gibbs

[edit]

Active asteroid331P/Gibbsalso has a small, close, and dynamically stable family (cluster) of other objects.[125][126]

(6478) Gault

[edit]

Asteroid(6478) Gaultshowed activity in late October/early November 2018; however, this alone could be impact ejecta. Activity subsided in December, but resumed in January 2019, making it unlikely to be solely one impact.

As a resource

[edit]

Propellant

[edit]

TheTsiolkovskiy equationgoverns rocket travel. Given the velocities involved with space flight, the equation dictates that mission mass is dominated by propellant requirements, increasing as missions progress beyond low-Earth orbit.

Asteroidal water can be used as aresistojetpropellant. The application of large amounts of electricity[how?](electrolysis) may decompose water into hydrogen and oxygen, which can be used in chemical rockets. When combined with the carbon present in carbonaceous chondrites (more likely to have high water content), these cansynthesizeoxygen andmethane(both storable in space with a passive thermal design, unlike hydrogen), oxygen andmethanol,etc. As an in-space resource, asteroidal mass does not need to be lifted out of a gravity well. The cost of propellant then, in terms of other propellant, is lower by a multiplier set by the Tsiolkovskiy equation.

Multiple organizations have and intend to use water propellants.[127][128][129]

Radiation shielding

[edit]

Water, as a reasonably dense material, can be used as a radiation shield. In microgravity, bags of water or water-filled spaces need little structural support. Another benefit is that water, having elements with moderate and lowZ,generates littlesecondary radiationwhen struck. It can be used to block the secondary radiation from higher-Z materials, forming agraded-Z shield.This other material may be the spoil organgue/tailingsfrom asteroid processing.[130][131][132]

Growth medium

[edit]

Carbonaceous chondrites contain water, carbon, and minerals necessary for plant growth.[133]

See also

[edit]

Bibliography

[edit]
  • Kerridge J, Bunch T (1979). "Aqueous Activity on Asteroids: Evidence from Carbonaceous Meteorites in Asteroids.". In Gehrels T, Mathews M (eds.).Asteroids.University of Arizona Press.ISBN978-0-8165-0695-8.
  • Roedder E, ed. (1984).Fluid Inclusions.Mineralogical Society of America.ISBN0-939950-16-2.
  • Zolensky M, McSween H (1988). "Aqueous Alteration". In Kerridge J, Matthews M (eds.).Meteorites and the early solar system.University of Arizona Press. p. 114.OCLC225496581.
  • Lewis J, Hutson M (1993). "Asteroidal Resource Opportunities Suggested by Meteorite Data". In Lewis J, Matthews M, Guerrieri M (eds.).Resources of Near-Earth Space.University of Arizona Press. p. 523.ISBN978-0-8165-1404-5.
  • Nichols C (1993). "Volatile Products from Carbonaceous Asteroids". In Lewis J, Matthews M, Guerrieri M (eds.).Resources of Near-Earth Space.University of Arizona Press. p. 543.ISBN978-0-8165-1404-5.
  • Lodders K,Osborne R (1999). "Perspectives on the Comet-Asteroid-Meteorite Link". InAltwegg K,Ehrenfreund P, Geiss J, Huebner WF, Geiss J (eds.).Composition and Origin of Cometary Materials.Dordrecht: Springer. pp. 289–297.ISBN978-0-7923-6154-1.
  • Jewitt D, Chizmadia L, Grimm R, Prialnik D (2002). "Water in the Small Bodies of the Solar System". In Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds.).Asteroids III.University of Arizona Press. p. 863.ISBN978-0-8165-2281-1.
  • Keppler H, Smyth JR (2006). Keppler H, Smyth J (eds.).Water in Nominally Anhydrous Minerals.ISBN978-0-939950-74-4.
  • Rivkin AS, Campins H, Emery J, Howell E (2015). "Astronomical Observations of Volatiles on Asteroids". In Michel P, DeMeo FE, Bottke WP (eds.).Asteroids IV.University of Arizona Press. pp. 65–88.ISBN978-0-8165-3218-6.
  • Binzel R, Reddy V, Dunn T (2015). "The Active Asteroids". In Michel P, DeMeo FE, Bottke WP (eds.).Asteroids IV.University of Arizona Press. p. 221.ISBN978-0-8165-3218-6.
  • Wilson L, Bland PA, Buczkowski D, Keil K, Krot AN (2015). "Hydrothermal and Magmatic Fluid Flow in Asteroids". In Michel P, DeMeo FE, Bottke WP (eds.).Asteroids IV.University of Arizona Press. p. 553.ISBN978-0-8165-3218-6.
  • Krot AN, Nagashima K, Alexander CM, Ciesla FJ, Fujiya W, Bonal L (2015). "Sources of Water and Aqueous Activity on the Chondrite Parent Asteroids". In Michel P, DeMeo FE, Bottke WP (eds.).Asteroids IV.University of Arizona Press. p. 635.ISBN978-0-8165-3218-6.
  • Snodgrass C, Agarwal J, Combi M, Fitzsimmons A, Guilbert-Lepoutre A, Hsieh HH, et al. (November 2017). "The main belt comets and ice in the solar system".The Astronomy and Astrophysics Review.25(1): 5.arXiv:1709.05549.Bibcode:2017A&ARv..25....5S.doi:10.1007/s00159-017-0104-7.S2CID7683815.

References

[edit]
  1. ^Rubin, A (1997)."Mineralogy of Meteorite Groups".Meteoritics & Planetary Science.32(2): 231–247.Bibcode:1997M&PS...32..231R.doi:10.1111/j.1945-5100.1997.tb01262.x.
  2. ^ab"Extraterrestrial H2O hunters".Retrieved14 Jan2019.
  3. ^Dudley, J; Greenwood, J; Sakamoto, N; Abe, K; Kuroda, M; Yurimoto, H (2018).Water contents of angrites, eucrites, and ureilites and new methods for measuring hydrogen in pyroxene using SIMS.49th LPSC.
  4. ^abCrawford, I (Feb 2015). "Lunar Resources: A Review".Progress in Physical Geography: Earth and Environment.39(2): 137–167.arXiv:1410.6865.Bibcode:2015PrPhG..39..137C.doi:10.1177/0309133314567585.S2CID54904229.
  5. ^Keppler H, Smyth JR (2006). Keppler H, Smyth J (eds.).Water in Nominally Anhydrous Minerals.ISBN978-0-939950-74-4.
  6. ^abcdZolensky M, McSween H (1988). "Aqueous Alteration". In Kerridge JF, Matthews MS (eds.).Meteorites and the early solar system.University of Arizona Press. p. 114.OCLC225496581.
  7. ^Tomeoka, K; Buseck, P (1990). "Phyllosilicate veins in a CI meteorite: evidence for queous alteration on the parent body".Nature.345(6271): 138–40.Bibcode:1990Natur.345..138T.doi:10.1038/345138a0.S2CID4326128.
  8. ^abcdSaylor, J; Zolensky, M; Bodnar, R; Le, L; Schwandt, C (2001).Fluid inclusions in carbonaceous chondrites.Lunar and Planetary Science Conference. p. 1875.
  9. ^abGooding J (1984). "Aqueous alteration on meteorite parent bodies: Possible role of" unfrozen "water and the Antarctic meteorite analogy".Meteoritics.9:228.Bibcode:1984Metic..19Q.228G.
  10. ^abRietmeijer F (1985). "A model for diagenesis in proto-planetary bodies".Nature.313(6000): 293–294.Bibcode:1985Natur.313..293R.doi:10.1038/313293a0.S2CID4314270.
  11. ^Bland PA, Alard O, Benedix GK, Kearsley AT, Menzies ON, Watt LE, Rogers NW (September 2005)."Volatile fractionation in the early solar system and chondrule/matrix complementarity".Proceedings of the National Academy of Sciences.102(39): 13755–60.Bibcode:2005PNAS..10213755B.doi:10.1073/pnas.0501885102.PMC1224360.PMID16174733.
  12. ^Clayton RN (August 1999). "Primordial water".Science.285(5432): 1364–5.doi:10.1126/science.285.5432.1364.PMID10490412.S2CID32334341.
  13. ^Robert, F; Deloule, E (2002).Using the D/H ratio to estimate the terrestrial water contamination in chondrites.LPS XXXIII.
  14. ^McSween H (1996). "The role of meteoritics in spaceflight missions and vice versa".Meteoritics & Planetary Science.31(6): 727–738.Bibcode:1996M&PS...31..727M.doi:10.1111/j.1945-5100.1996.tb02108.x.
  15. ^"OSIRIS-REx: Asteroid Sample Return Mission".Arizona Board of Regents.Retrieved17 Jan2019.
  16. ^"Asteroid Explorer" Hayabusa2 "".Japan Aerospace Exploration Agency.Retrieved17 Jan2019."thus we expect to clarify the origin of life by analyzing samples acquired from a primordial celestial body such as a C-type asteroid to study organic matter and water in the solar system..."
  17. ^"MMX: Martian Moons Exploration".Japan Aerospace Exploration Agency. Archived fromthe originalon 14 August 2017.Retrieved17 Jan2019.
  18. ^Wasson J, Wetherill G (1979). Gehrels T, Mathews M (eds.).Asteroids.University of Arizona Press. p. 926.ISBN978-0-8165-0695-8.
  19. ^Wetherill, G; Revelle, D (1982).Comets, Wilkening L.University of Arizona Press. p. 297.
  20. ^Wood, C.Fall statistics of H chondrites: Evidence of cometary origins from ordinary chondrites.LPSC XIII. pp. 873–874.
  21. ^abChan, Q (Jan 2018)."Organic matter in extraterrestrial water-bearing salt crystals".Science Advances.4(1): eaao3521.doi:10.1126/sciadv.aao3521.PMC5770164.PMID29349297.
  22. ^Bodnar, R; Dolocan, A; Zolensky, M; Lamadrid, H; Kebukawa, Y; Chan, Q (2019).First Direct Measurements Of Compositions Of Early Solar System Aqueous Fluids.50th LPSC.
  23. ^abZolensky, M (17 Apr 2017)."The Search for and Analysis of Direct Samples of Early Solar System Aqueous Fluids".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.375(2094): 20150386.Bibcode:2017RSPTA.37550386Z.doi:10.1098/rsta.2015.0386.PMC5394253.PMID28416725.
  24. ^Warner, J; Ashwal, L; Bergman, S; Gibson, E; Henry, D; Lee‐Berman, R; Roedder, E; Belkin, H (10 February 1983). "Fluid inclusions in stony meteorites".Journal of Geophysical Research: Solid Earth.88(S02): A731-35.Bibcode:1983LPSC...13..731W.doi:10.1029/JB088iS02p0A731.
  25. ^Rudnick, R; Ashwal, L; Henery, D; Gibson, E; Roedder, E; Belkin, H (15 Feb 1985). "Fluid inclusions in stony meteorites - A cautionary note".Journal of Geophysical Research.90:C669-75.Bibcode:1985JGR....90..669R.doi:10.1029/JB090iS02p0C669.PMID11542002.
  26. ^Guilhaumou, N (May 2006).Fluid and melt inclusions in meteorites: clues to the petrology of asteroids and planets in the solar system.ACROFI I.
  27. ^Zolensky, M; Bodnar, R; Yurimoto, H; Itoh, S; Fries, M; Steele, A; Chan, Q; Tsuchiyama, A; Kebukawa, Y; Ito, M (17 April 2017)."The search for and analysis of direct samples of early Solar System aqueous fluids".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.375(2094): 20150386.Bibcode:2017RSPTA.37550386Z.doi:10.1098/rsta.2015.0386.PMC5394253.PMID28416725.
  28. ^Franks, Felix (1981).Water: A Comprehensive Treatise v. 5(2nd ed.). New York: Plenum Press. p.100.ISBN0-306-37185-5.4.3.4 Silicas
  29. ^Kaplan, I.Handbook of Elemental Abundances in Meteorites.p. 21.Chapter: Hydrogen (1)
  30. ^Hamilton, V (2014-05-18)."The OSIRIS-REx Thermal Emission Spectrometer (OTES) – Our Heat Sensor and Mineral Mapper".Life on the Asteroid Frontier.Retrieved24 Mar2019."...minerals of particular interest, such as those that contain water"
  31. ^Hamilton, V Simon A Christensen P Reuter D Clark B Barucci M Bowles N Boynton W Brucato J Cloutis E Connolly H Donaldson Hanna K Emery J Enos H Fornasier S Haberle C Hanna R Howell E; Kaplan H Keller L (Mar 2019)."Evidence for widespread hydrated minerals on asteroid (101955) Bennu"(PDF).Nature Astronomy.3(332–340): 332–340.Bibcode:2019NatAs...3..332H.doi:10.1038/s41550-019-0722-2.hdl:1721.1/124501.PMC6662227.PMID31360777.{{cite journal}}:CS1 maint: multiple names: authors list (link)
  32. ^Palme, H; Boynton, W (1993).Protostars and Planets.University of Arizona Press. p. 979.ISBN9780816513345.Chapter: Meteoritic constraints on conditions in the solar nebula
  33. ^abMilliken R, Mustard J (2005). "Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy".J. Geophys. Res.110(E12): E12001.Bibcode:2005JGRE..11012001M.CiteSeerX10.1.1.654.2409.doi:10.1029/2005JE002534.
  34. ^Russell S;Ballentine C; Grady M (17 Apr 2017)."The origin, history and role of water in the evolution of the inner Solar System".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.375(2094): 20170108.Bibcode:2017RSPTA.37570108R.doi:10.1098/rsta.2017.0108.PMC5394259.PMID28416731."Water in chondrites is contained within clay minerals"
  35. ^Rivkin A, Howell E, Emery J, Sunshine J (Apr 2018). "Evidence for OH or H2O on the surface of 433 Eros and 1036 Ganymed".Icarus.304:74.arXiv:1704.04776.Bibcode:2018Icar..304...74R.doi:10.1016/j.icarus.2017.04.006.S2CID118823980.
  36. ^S, Mackwell; Kohlstedt, D (1985). "The role of water in the deformation of olivine single crystals".Journal of Geophysical Research.90(B13): 1319–1333.Bibcode:1985JGR....9011319M.doi:10.1029/JB090iB13p11319.
  37. ^Kurosawa, M; Yurimoto, Y; Sueno, S (Jan 1993).Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS.24th LPSC. pp. 839–840.
  38. ^Griffin, J; Berry, A; Frost, D; Wimperis, S; Ashbrook, S (2013)."Water in the Earth's mantle: a solid-state NMR study of hydrous wadsleyite".Chemical Science.4(4): 1523.doi:10.1039/c3sc21892a.hdl:1885/77486.
  39. ^Lewis, J (2014). "VIII. Asteroid Resources".Asteroid Mining 101: Wealth for the New Space Economy.ISBN9780990584216.
  40. ^Williams, M."The gas (and ice) giant Neptune".Phys.org.Retrieved25 Jan2019.
  41. ^Moore C (1971).Ch.: Sulfur, in Handbook of Elemental Abundances in Meteorites, B. Mason ed.Gordon and Breach. p. 137.ISBN978-0-677-14950-9.
  42. ^Hulston J, Thode H (1965). "Cosmic-ray produced S36 and S33 in the metallic phase of iron meteorites".Journal of Geophysical Research.70(18): 4435.Bibcode:1965JGR....70.4435H.doi:10.1029/JZ070i018p04435.
  43. ^Wiik, H (1956). "The Chemical Composition of Some Stony Meteorites".Geochimica et Cosmochimica Acta.9(5): 279.Bibcode:1956GeCoA...9..279W.doi:10.1016/0016-7037(56)90028-X.
  44. ^Keil, K (1969). "4".The Handbook of Geochemistry, Part 1.Springer.
  45. ^Mason, B (1971).Handbook of Elemental Abundances in Meteorites.Gordon Breach, Science Publishers, Inc.ISBN0-677-14950-6.chapter: Introduction
  46. ^remo, J (1994).Hazards Due to Comets & Asteroids.pp. 552–554.
  47. ^Heck, P; Schmidz, B; Bottke, B; Rout, S; Kita, N; Anders, A; Defouilloy, C; Dronov, A; Terfelt, F (Jan 2017). "Rare meteorites common in the Ordovician period".Nature Astronomy.1(2): 0035.Bibcode:2017NatAs...1E..35H.doi:10.1038/s41550-016-0035.S2CID102488048.
  48. ^Chan Q, Chikaraishi Y, et al. (Jan 2016)."Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotope ratios".Earth and Planetary Science Letters.68:7.Bibcode:2016EP&S...68....7C.doi:10.1186/s40623-016-0382-8.
  49. ^Krot AN, Nagashima K, Alexander CM, Ciesla FJ, Fujiya W, Bonal L (2015). "Sources of Water and Aqueous Activity on the Chondrite Parent Asteroids". In Michel P, DeMeo FE, Bottke WP (eds.).Asteroids IV.University of Arizona Press. p. 635.ISBN978-0-8165-3218-6.
  50. ^Dworkin, J (2018)."OSIRIS-REx Contamination Control Strategy and Implementation".Space Science Reviews.214(1): 19.arXiv:1704.02517.Bibcode:2018SSRv..214...19D.doi:10.1007/s11214-017-0439-4.PMC6350808.PMID30713357.
  51. ^Vdovykin, G (1973). "The Mighei Meteorite".Space Science Reviews.14(6): 832–79.Bibcode:1973SSRv...14..832V.doi:10.1007/bf00224777.S2CID120513472.section A. Major Elements
  52. ^Rudraswami, N (2019)."Chemical, isotopic and amino acid composition of Mukundpura CM2.0 (CM1) chondrite: Evidence of parent body aqueous alteration".Geoscience Frontier.10(2): 495–504.Bibcode:2019GeoFr..10..495R.doi:10.1016/j.gsf.2018.02.001."The water content of ~9.8 WT.% is similar to that found in many CM chondrites." "...presence of abundant water"
  53. ^abAlexander CM, Bowden R, Fogel ML, Howard KT, Herd CD, Nittler LR (August 2012)."The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets".Science.337(6095): 721–3.Bibcode:2012Sci...337..721A.doi:10.1126/science.1223474.PMID22798405.S2CID206542013.
  54. ^Marrocchi, Y; Bekaert, D; Piani, L (2018)."Origin and abundance of water in carbonaceous asteroids"(PDF).Earth and Planetary Science Letters.482:23–32.Bibcode:2018E&PSL.482...23M.doi:10.1016/j.epsl.2017.10.060.
  55. ^Buseck, P; Hua, X (1993). "Matrices Of Carbonaceous Chondrite Meteorites".Annu. Rev. Earth Planet. Sci.21:255–305.Bibcode:1993AREPS..21..255B.doi:10.1146/annurev.ea.21.050193.001351.
  56. ^de Leuw, S; Rubin, A; Wasson, J (Jul 2010). "Carbonates in CM chondrites: Complex formation histories and comparison to carbonates in CI chondrites".Meteoritics & Planetary Science.45(4): 513.Bibcode:2010M&PS...45..513D.doi:10.1111/j.1945-5100.2010.01037.x.S2CID14208785.
  57. ^Piani, L; Yurimoto, H; Remusat, L (2018). "A dual origin for water in carbonaceous asteroids revealed by CM chondrites".Nature Astronomy.2(4): 317–323.arXiv:1802.05893.Bibcode:2018NatAs...2..317P.doi:10.1038/s41550-018-0413-4.S2CID54818758.
  58. ^Fujiya, W (2018). "Oxygen isotopic ratios of primordial water in carbonaceous chondrites".Earth and Planetary Science Letters.481:264.Bibcode:2018E&PSL.481..264F.doi:10.1016/j.epsl.2017.10.046.
  59. ^Weisberg, M; Prinz, M; Clayton, R; Mayeda, T (Apr 1993). "The CR (Renazzo-type) carbonaceous chondrite group and its implications".Geochim. Cosmochim. Acta.57(7): 1567–1586.Bibcode:1993GeCoA..57.1567W.doi:10.1016/0016-7037(93)90013-M.
  60. ^Bonal, L; Alexander, C; Huss, G; Nagashima, K; Quirico, E; Beck, P (2013). "Hydrogen isotopic composition of the water in CR chondrites".Geochimica et Cosmochimica Acta.106:111–133.Bibcode:2013GeCoA.106..111B.doi:10.1016/j.gca.2012.12.009.S2CID95276139.
  61. ^Keller, L; McKay, D (1993). "Aqueous alteration of the Grosnaja CV3 carbonaceous chondrite".Meteoritics.23(3): 378.Bibcode:1993Metic..28R.378K.
  62. ^Piani, L; Marrocchi, Y (Dec 2018)."Hydrogen isotopic composition of water in CV-type carbonaceous chondrites".Earth and Planetary Science Letters.504:64–71.Bibcode:2018E&PSL.504...64P.doi:10.1016/j.epsl.2018.09.031.
  63. ^abAlexander, C; Barber, D; Hutchinson, R (1989). "The microstructure of Semarkona and Bishunpur".Geochimica et Cosmochimica Acta.53(11): 3045–57.Bibcode:1989GeCoA..53.3045A.doi:10.1016/0016-7037(89)90180-4.
  64. ^abZolensky, M; Bodnar, R; Gibson, E; Nyquist, L (27 Aug 1999). "Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans".Science.285(5432): 1377–9.doi:10.1126/science.285.5432.1377.PMID10464091.S2CID12819160.
  65. ^Doyle, P (23 Jun 2015)."Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite".Nature Communications.6:7444.Bibcode:2015NatCo...6.7444D.doi:10.1038/ncomms8444.PMID26100451.
  66. ^Jones, R (2016)."Phosphate Minerals in the H Group of Ordinary Chondrites, and Fluid Activity Recorded in Apatite Heterogeneity in the Zag H3-6 Regolith Breccia".American Mineralogist.101(11): 2452–2467.Bibcode:2016AmMin.101.2452J.doi:10.2138/am-2016-5728.S2CID99985776.
  67. ^Deloule, E; Robert, F (Nov 1995). "Interstellar water in meteorites?".Geochim. Cosmochim. Acta.59(22): 4695–4706.Bibcode:1995GeCoA..59.4695D.doi:10.1016/0016-7037(95)00313-4.PMID11539426.
  68. ^Greshake, A (May 2014)."A strongly hydrated microclast in the Rumuruti chondrite NWA 6828: Implications for the distribution of hydrous material in the solar system".Meteoritics & Planetary Science.49(5): 824–841.Bibcode:2014M&PS...49..824G.doi:10.1111/maps.12295.
  69. ^McCanta, M; Treiman, A; Dyar, M; Alexander, C; Rumble, D; Essene, E (Dec 2008). "The LaPaz Icefield 04840 meteorite: Mineralogy, metamorphism, and origin of an amphibole- and biotite-bearing R chondrite".Geochimica et Cosmochimica Acta.72(23): 5757–5780.Bibcode:2008GeCoA..72.5757M.doi:10.1016/j.gca.2008.07.034.
  70. ^Gross, J; Treiman, A; Connolly, H (2013).A New Subgroup Of Amphibole-Bearing R-Chondrite: Evidence From The New R-Chondrite MIL 11207.80th Annual Meteoritical Society.
  71. ^Sarafian, A;Roden, M; Patino-Douce, E (2013)."The volatile content of Vesta: Clues from apatite in eucrites".Meteoritics & Planetary Science.48(11): 2135–2154.Bibcode:2013M&PS...48.2135S.doi:10.1111/maps.12124.
  72. ^Barrett, T (2016)."The abundance and isotopic composition of water in eucrites"(PDF).Meteoritics & Planetary Science.51(6): 1110–1124.Bibcode:2016M&PS...51.1110B.doi:10.1111/maps.12649.
  73. ^abSarafian, A(17 Apr 2017)."Early Accretion of Water and Volatile Elements to the Inner Solar System: Evidence from Angrites".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.375(2094): 20160209.Bibcode:2017RSPTA.37560209S.doi:10.1098/rsta.2016.0209.PMC5394258.PMID28416730.
  74. ^Sarafian, A(7 June 2017). "Angrite meteorites record the onset and flux of water to the inner solar system".Geochimica et Cosmochimica Acta.212:156–166.Bibcode:2017GeCoA.212..156S.doi:10.1016/j.gca.2017.06.001.
  75. ^Rietmeijer, Frans J. M.; MacKinnon, Ian D. R. (1985). "Layer silicates in a chondritic porous interplanetary dust particle".Journal of Geophysical Research.90:149–155.Bibcode:1985JGR....90..149R.doi:10.1029/JB090iS01p00149.
  76. ^Engrand, C (1999). "Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: an ion microprobe study".Meteoritics & Planetary Science.34(5): 773–786.Bibcode:1999M&PS...34..773E.doi:10.1111/j.1945-5100.1999.tb01390.x.S2CID128466002.
  77. ^Aleon, J; Engrand; Robert, F; Chaussidon, M (2001). "Clues to the origin of interplanetary dust particles from the isotopic study of their hydrogen-bearing phases".Geochimica et Cosmochimica Acta.65(23): 4399–4412.Bibcode:2001GeCoA..65.4399A.doi:10.1016/S0016-7037(01)00720-7.
  78. ^Aleon, J; Engrand, C; Robert, F; Chaussidon, M (2001). "Clues on the origin of interplanetary dust particles form the isotopic study of their hydrogen-bearing phases".Geochimica et Cosmochimica Acta.65(23): 4399–4412.Bibcode:2001GeCoA..65.4399A.doi:10.1016/S0016-7037(01)00720-7.
  79. ^Ishii, H; et al. (2008). "Comparison of Comet 81P/Wild 2 dust with interplanetary dust from comets".Science.319(5862): 447–50.Bibcode:2008Sci...319..447I.doi:10.1126/science.1150683.PMID18218892.S2CID24339399.
  80. ^Garenne, A; Beck, P; Montes-Hernandez, G; Brissaud, O (Jan 2016). "Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition".Icarus.264:172–183.Bibcode:2016Icar..264..172G.doi:10.1016/j.icarus.2015.09.005.
  81. ^Usui F, Hasegawa S, Ootsubo T, Onaka T (17 December 2018). "Akari/IRC near-infrared asteroid spectroscopic survey: AcuA spec".Publ. Astron. Soc. Jpn.71(1): 142.arXiv:1810.03828.Bibcode:2019PASJ...71....1U.doi:10.1093/pasj/psy125.S2CID119479797.
  82. ^Abe M, Takagi Y, Kitazato K, Abe S, Hiroi T, Vilas F, Clark BE, Abell PA, Lederer SM, Jarvis KS, Nimura T, Ueda Y, Fujiwara A (June 2006). "Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft".Science.312(5778): 1334–8.Bibcode:2006Sci...312.1334A.doi:10.1126/science.1125718.PMID16741108.S2CID206508289.
  83. ^Matsuoka M, Nakamura T, Osawa T, Iwata T, Kitazato K, Abe M, et al. (4 Sep 2017)."An evaluation method of reflectance spectra to be obtained by Hayabusa2 Near-Infrared Spectrometer (NIRS3) based on laboratory measurements of carbonaceous chondrites".Earth, Planets and Space.69(1): 120.Bibcode:2017EP&S...69..120M.doi:10.1186/s40623-017-0705-4.
  84. ^Vilas F (1994). "A Cheaper, Faster, Better way to Detect Water of Hydration on Solar System Bodies".Icarus.111(2): 456–67.Bibcode:1994Icar..111..456V.doi:10.1006/icar.1994.1156.
  85. ^Fornasier S, Lantz C, Barucci M, Lazzarin M (2014). "Aqueous alteration on main belt primitive asteroids: Results from visible spectroscopy".Icarus.233:163.arXiv:1402.0175.Bibcode:2014Icar..233..163F.doi:10.1016/j.icarus.2014.01.040.S2CID119234996.
  86. ^A'Hearn M, Feldman P (1992). "Water Vaporization on Ceres".Icarus.98(1): 54–60.Bibcode:1992Icar...98...54A.doi:10.1016/0019-1035(92)90206-M.
  87. ^Rivkin AS, Campins H, Emery J, Howell E (2015). "Astronomical Observations of Volatiles on Asteroids". In Michel P, DeMeo FE, Bottke WP (eds.).Asteroids IV.University of Arizona Press. pp. 65–88.ISBN978-0-8165-3218-6.
  88. ^Rawlins K, Moses JI, Zahnle KJ (1995). "Exogenic sources of water for Mercury's polar ice".Bull. Am. Astron. Soc.27:1117–1118.Bibcode:1995DPS....27.2112R.
  89. ^Killen RM, Benkhoff J, Morgan TH (1997). "Mercury's polar caps and the generation of an OH exosphere".Icarus.125(1): 195–211.Bibcode:1997Icar..125..195K.doi:10.1006/icar.1996.5601.
  90. ^Moses JI, Rawlins K, Zahnle K, Dones L (1999). "External Sources of Water for Mercury's Putative Ice Deposits".Icarus.137(2): 197–221.Bibcode:1999Icar..137..197M.doi:10.1006/icar.1998.6036.S2CID27144278.
  91. ^Albarede F, Ballhaus C, Blichert-Toft J, Lee CT, Marty B, Moynier F, Yin QZ (2013). "Asteroidal impacts and the origin of terrestrial and lunar volatiles".Icarus.222(1): 44.Bibcode:2013Icar..222...44A.doi:10.1016/j.icarus.2012.10.026.
  92. ^Saal AE, Hauri EH, Van Orman JA, Rutherford MJ (14 Jun 2013). "Hydrogen Isotopes in Lunar Volcanic Glasses and Melt Inclusions Reveal a Carbonaceous Chondrite Heritage".Science.340(6318): 1317–20.Bibcode:2013Sci...340.1317S.doi:10.1126/science.1235142.PMID23661641.S2CID9092975.
  93. ^Sarafian AR, Nielsen SG, Marschall HR, McCubbin FM, Monteleone BD (October 2014). "Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source".Science.346(6209): 623–6.Bibcode:2014Sci...346..623S.doi:10.1126/science.1256717.PMID25359971.S2CID30471982.
  94. ^Dauphas, N; Robert, F; Marty, B (Dec 2000). "The Late Asteroidal and Cometary Bombardment of Earth as Recorded in Water Deuterium to Protium Ratio".Icarus.148(2): 508–512.Bibcode:2000Icar..148..508D.doi:10.1006/icar.2000.6489.S2CID85555707.
  95. ^Ong, L; Asphaug, E; Korycansky, D; Coker, R (Jun 2010). "Volatile retention from cometary impacts on the Moon".Icarus.207(2): 578–589.Bibcode:2010Icar..207..578O.doi:10.1016/j.icarus.2009.12.012.
  96. ^Svetsov VV, Shuvalov VV (Sep 2015). "Water Delivery to the Moon by Asteroidal and Cometary Impacts".Planetary and Space Science.117:444–452.Bibcode:2015P&SS..117..444S.doi:10.1016/j.pss.2015.09.011.
  97. ^Zolensky M, Weisberg M, Buchanan P, Mittelfehldt D (1996). "Mineralogy of carbonaceous chondrite clasts in HED achondrites and the moon".Meteoritics & Planetary Science.31(4): 518–537.Bibcode:1996M&PS...31..518Z.doi:10.1111/j.1945-5100.1996.tb02093.x.
  98. ^Elsila, J; Callahan, M; Dworkin, J; Glavin, D; McLain, H; Noble, S; Gibson, E (2016)."The origin of amino acids in lunar regolith samples".Geochimica et Cosmochimica Acta.172:357–69.Bibcode:2016GeCoA.172..357E.doi:10.1016/j.gca.2015.10.008.
  99. ^abJewitt D, Guilbert-Lepoutre A (Jan 2012). "Limits to Ice on Asteroids (24) Themis and (65) Cybele".Astronomical Journal.143(1): 21.arXiv:1111.3292.Bibcode:2012AJ....143...21J.doi:10.1088/0004-6256/143/1/21.S2CID12423969.
  100. ^McKay AJ, Bodewits D, Li JY (Sep 2016). "Observational Constraints on Water Sublimation from 24 Themis and 1 Ceres".Icarus.286:308–313.arXiv:1609.07156.Bibcode:2017Icar..286..308M.doi:10.1016/j.icarus.2016.09.032.S2CID119121785.
  101. ^Castillo-Rogez JC, Schmidt BE (May 2010)."Geophysical evolution of the Themis family parent body".Geophysical Research Letters.37(10): n/a.Bibcode:2010GeoRL..3710202C.doi:10.1029/2009GL042353.
  102. ^Florczak M, Lazzaro D, Mothé-Diniz T, Angeli CA, Betzler AS (1999)."A spectroscopic study of the Themis family".Astronomy and Astrophysics Supplement.134(3): 463.Bibcode:1999A&AS..134..463F.doi:10.1051/aas:1999150.
  103. ^Marsset M, Vernazza P, Birlan M, DeMeo F, Binzel RP, Dumas C, Milli J, Popescu M (2016). "Compositional characteristics of the Themis family".Astronomy & Astrophysics.586:A15.arXiv:1601.02405.Bibcode:2016A&A...586A..15M.doi:10.1051/0004-6361/201526962.S2CID55479080.
  104. ^Hsieh HH, Novaković B, Kim Y, Brasser R (2018)."Asteroid Family Associations of Active Asteroids".Astronomical Journal.155(2): 96.arXiv:1801.01152.Bibcode:2018AJ....155...96H.doi:10.3847/1538-3881/aaa5a2.S2CID119336304.
  105. ^Haghighipour N (2009). "Dynamical constraints on the origin of Main Belt Comets".Meteoritics & Planetary Science.44(12): 1863–1869.arXiv:0910.5746.Bibcode:2009M&PS...44.1863H.doi:10.1111/j.1945-5100.2009.tb01995.x.S2CID56206203.
  106. ^Licandro J, Campins H, Kelley M, Hargrove K, Pinilla-Alonso N, Cruikshank D, et al. (2011)."(65) Cybele: detection of small silicate grains, water-ice, and organics".Astronomy & Astrophysics.525:A34.Bibcode:2011A&A...525A..34L.doi:10.1051/0004-6361/201015339.
  107. ^Reddy (2018). "A".LPSC.
  108. ^Scully JE, Russell CT, Yin A, Jaumann R, Carey E, Castillo-Rogez J, et al. (Feb 2015). "Geomorphological Evidence for Transient Water Flow on Vesta".Earth and Planetary Science Letters.411:151.Bibcode:2015E&PSL.411..151S.doi:10.1016/j.epsl.2014.12.004.
  109. ^De Sanctis, M; Ammannito, E; et al. (10 Dec 2015)."Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres"(PDF).Nature.528(7581): 241–4.Bibcode:2015Natur.528..241D.doi:10.1038/nature16172.PMID26659184.S2CID1687271.
  110. ^Takir D, Reddy V, Sanchez JA, Shepard MK, Emery JP (Oct 2016)."Detection of water and/or hydroxyl on Asteroid (16) Psyche".Astronomical Journal.153(1): 31.arXiv:1610.00802.Bibcode:2017AJ....153...31T.doi:10.3847/1538-3881/153/1/31.S2CID118611420.
  111. ^Jin ZL, Bose M, Peeters Z (2019)."New Clues to Ancient Water on Itokawa".Lunar and Planetary Science Conference.5(2083): 1670.Bibcode:2018LPI....49.1670J.doi:10.1126/sciadv.aav8106.PMC6527261.PMID31114801.
  112. ^Kawaguchi JI, Uesugi KT, Fujiwara A, Saitoh H (1999). "The MUSES-C, Mission Description and its Status".Acta Astronautica.45(4): 397.Bibcode:1999AcAau..45..397K.doi:10.1016/S0094-5765(99)00159-9.
  113. ^Yada T, Fujimura A, Abe M, Nakamura T, Noguchi T, Okazaki R, et al. (February 2014)."Hayabusa‐returned sample curation in the Planetary Material Sample Curation Facility of JAXA".Meteoritics & Planetary Science.49(2): 135–53.Bibcode:2014M&PS...49..135Y.doi:10.1111/maps.12027.
  114. ^Maltagliati L (Oct 2018)."Cometary Bennu?".Nature Astronomy.2(10): 761.Bibcode:2018NatAs...2..761M.doi:10.1038/s41550-018-0599-5.S2CID189930305.
  115. ^"Feb 11, 2019 [Mission Status]".OSIRIS-REx: Asteroid Sample Return Mission.Retrieved24 Mar2019.
  116. ^Witze, A (2019)."Asteroid's bumpiness threatens US plan to return a sample to Earth".Nature.Springer Nature Publishing AG.doi:10.1038/d41586-019-00859-7.PMID32203348.S2CID134983567.Retrieved24 Mar2019.
  117. ^Hamilton, V Simon A Christensen P Reuter D Clark B Barucci M Bowles N Boynton W Brucato J Cloutis E Connolly H Donaldson Hanna K Emery J Enos H Fornasier S Haberle C Hanna R Howell E; Kaplan H Keller L (Mar 2019)."Evidence for widespread hydrated minerals on asteroid (101955) Bennu"(PDF).Nature Astronomy.3(332–340): 332–340.Bibcode:2019NatAs...3..332H.doi:10.1038/s41550-019-0722-2.hdl:1721.1/124501.PMC6662227.PMID31360777.{{cite journal}}:CS1 maint: multiple names: authors list (link)
  118. ^Sears, D (2004).The Origin of Chondrules and Chondrites.Cambridge University Press.ISBN978-1107402850.
  119. ^"OSIRIS-REx at AGU 2018".asteroidmission.org.10 December 2018.Retrieved13 December2018.
  120. ^Busarev VV, Makalkin AB, Vilas F, Barabanov SI, Scherbina MP (2017). "New Candidates for Active Asteroids: (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and Near-Earth (162173) Ryugu".Icarus.304:83–94.arXiv:1705.09086.Bibcode:2018Icar..304...83B.doi:10.1016/j.icarus.2017.06.032.S2CID119344402.
  121. ^anon (Mar 20, 2019)."Japan's Hayabusa2 probe finds water on Ryugu asteroid".Kyodo News.Retrieved17 Nov2019.
  122. ^Kitazao, K; Milliken, R; Iwata, T; Abe, M; Ohtake, M; Matsuura, S; Arai, T; Nakauchi, Y; Nakamura, T (19 Mar 2019)."The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy".Science.364(6437): 272–75.Bibcode:2019Sci...364..272K.doi:10.1126/science.aav7432.PMID30890589.
  123. ^Feierberg MA, Lebofsky LA, Tholen DJ (1985). "The Nature of C-Class Asteroids from 3-um Spectrophotometry".Icarus.63(2): 183–91.Bibcode:1985Icar...63..183F.doi:10.1016/0019-1035(85)90002-8.
  124. ^Grimm R, McSween H (1989). "Water and the thermal evolution of carbonaceous parent bodies".Icarus.82(2): 244.Bibcode:1989Icar...82..244G.doi:10.1016/0019-1035(89)90038-9.
  125. ^Novaković B, Hsieh HH, Cellino A, Micheli M, Pedani M (2014). "Discovery of a young asteroid cluster associated with P/2012 F5 (Gibbs)".Icarus.231:300–09.arXiv:1401.2966.Bibcode:2014Icar..231..300N.doi:10.1016/j.icarus.2013.12.019.S2CID119216225.
  126. ^Busarev VV, Makalkin AB, Vilas F, Barabanov SI, Scherbina MP (2018)."Asteroid clusters similar to asteroid pairs".Icarus.304:110–26.Bibcode:2018Icar..304..110P.doi:10.1016/j.icarus.2017.08.008.
  127. ^"Địa cầu ― nguyệt ラグランジュ điểm tham tra cơ EQUULEUSによる thâm vũ trụ tham tra CubeSat thật hiện への thiêu chiến".Vũ trụ khoa học tối tiền tuyến.JAXA.Retrieved2 Apr2019.
  128. ^"Propulsion".University of Surrey.Retrieved17 Feb2019.
  129. ^"DSI to provide Comet satellite propulsion for Astro Digital".Deep Space Industries.Archived fromthe originalon 17 March 2018.Retrieved17 Feb2018.
  130. ^Matloff GL, Wilga M (2011). "NEOs as stepping stones to Mars and main-belt asteroids".Acta Astronautica.68(5–6): 599.Bibcode:2011AcAau..68..599M.doi:10.1016/j.actaastro.2010.02.026.
  131. ^Pohl, L (Mar 2017). "The radiation shielding potential of CI and CM chondrites".Advances in Space Research.59(6): 1473–1485.Bibcode:2017AdSpR..59.1473P.doi:10.1016/j.asr.2016.12.028.
  132. ^Green, Marc; Hess, Justin (13 June 2013). "Near Earth Asteroids: The Celestial Chariots".arXiv:1306.3118.
  133. ^Mautner M (2002)."Planetary Bioresources and Astroecology 1. Planetary Microcosm Bioassays of Martian and Carbonaceous Chondrite Materials: Nutrients, Electrolyte Solutions, and Algal and Plant Responses".Icarus.158(1): 72.Bibcode:2002Icar..158...72M.doi:10.1006/icar.2002.6841.