Jump to content

Radio spectrum

From Wikipedia, the free encyclopedia
(Redirected fromBand (radio))

Theradio spectrumis the part of theelectromagnetic spectrumwithfrequenciesfrom 3Hzto 3,000GHz(3THz). Electromagnetic waves in this frequency range, calledradio waves,are widely used in modern technology, particularly intelecommunication.To preventinterferencebetween different users, the generation andtransmissionof radio waves is strictly regulated by national laws, coordinated by an international body, theInternational Telecommunication Union(ITU).[1]

Different parts of the radio spectrum are allocated by the ITU for different radio transmission technologies and applications; some 40radiocommunication servicesare defined in the ITU'sRadio Regulations(RR).[2]In some cases, parts of the radio spectrum are sold or licensed to operators of private radio transmission services (for example, cellular telephone operators or broadcast television stations). Ranges of allocated frequencies are often referred to by their provisioned use (for example, cellular spectrum or television spectrum).[3]Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to utilize it more effectively is driving modern telecommunications innovations such astrunked radio systems,spread spectrum,ultra-wideband,frequency reuse,dynamic spectrum management,frequency pooling, andcognitive radio.

Limits[edit]

Thefrequencyboundaries of the radio spectrum are a matter of convention in physics and are somewhat arbitrary. Since radio waves are the lowest frequency category ofelectromagnetic waves,there is no lower limit to the frequency of radio waves.[4]Radio waves are defined by the ITU as: "electromagnetic waves of frequencies arbitrarily lower than 3000 GHz, propagated in space without artificial guide".[5]At the high frequency end the radio spectrum is bounded by theinfraredband. The boundary between radio waves and infrared waves is defined at different frequencies in different scientific fields. Theterahertz band,from 300 gigahertz to 3 terahertz, can be considered either as microwaves or infrared. It is the highest band categorized as radio waves by theInternational Telecommunication Union.[4]but spectroscopic scientists consider these frequencies part of thefar infraredand mid infrared bands.

Because it is a fixed resource, thepracticallimits and basic physical considerations of the radio spectrum, the frequencies which are useful forradio communication,are determined by technological limitations which are impossible to overcome.[6]So although the radio spectrum is becoming increasingly congested, there is no possible way to add additional frequencybandwidthoutside of that currently in use.[6]The lowest frequencies used for radio communication are limited by the increasing size of transmittingantennasrequired.[6]The size of antenna required to radiate radio power efficiently increases in proportion towavelengthor inversely with frequency. Below about 10 kHz (a wavelength of 30 km), elevated wire antennas kilometers in diameter are required, so very few radio systems use frequencies below this. A second limit is the decreasingbandwidthavailable at low frequencies, which limits thedata ratethat can be transmitted.[6]Below about 30 kHz, audio modulation is impractical and only slow baud rate data communication is used. The lowest frequencies that have been used for radio communication are around 80 Hz, inELFsubmarine communicationssystems built by a few nations' navies to communicate with their submerged submarines hundreds of meters underwater. These employ hugeground dipoleantennas 20–60 km long excited by megawatts of transmitter power, and transmit data at an extremely slow rate of about 1 bit per minute (17millibits per second,or about 5 minutes per character).

The highest frequencies useful for radio communication are limited by the absorption of microwave energy by the atmosphere.[6]As frequency increases above 30 GHz (the beginning of themillimeter waveband), atmospheric gases absorb increasing amounts of power, so the power in a beam of radio waves decreases exponentially with distance from the transmitting antenna. At 30 GHz, useful communication is limited to about 1 km, but as frequency increases the range at which the waves can be received decreases. In theterahertz bandabove 300 GHz, the radio waves are attenuated to zero within a few meters due to theabsorptionof electromagnetic radiation by the atmosphere (mainly due toozone,water vaporandcarbon dioxide), which is so great that it is essentially opaque toelectromagneticemissions, until it becomes transparent again near thenear-infraredandoptical windowfrequency ranges.[7][8]

Bands[edit]

Aradio bandis a smallfrequency band(a contiguous section of the range of the radio spectrum) in whichchannelsare usually used or set aside for the same purpose. To prevent interference and allow for efficient use of the radio spectrum, similar services are allocated in bands. For example, broadcasting, mobile radio, or navigation devices, will be allocated in non-overlapping ranges of frequencies.

Band plan[edit]

For each radio band, the ITU has aband plan(orfrequency plan) which dictates how it is to be used and shared, to avoidinterferenceand to setprotocolfor thecompatibilityoftransmittersandreceivers.[9]

Each frequency plan defines the frequency range to be included, howchannelsare to be defined, and what will be carried on those channels. Typical definitions set forth in a frequency plan are:

ITU[edit]

The actual authorized frequency bands are defined by theITU[10]and the local regulating agencies like the USFederal Communications Commission(FCC)[11]and voluntary best practices help avoid interference.[12]

As a matter of convention, the ITU divides the radio spectrum into 12 bands, each beginning at awavelengthwhich is a power of ten (10n) metres, with corresponding frequency of 3×108−nhertz,and each covering a decade of frequency or wavelength. Each of these bands has a traditional name. For example, the termhigh frequency(HF) designates the wavelength range from 100 to 10 metres, corresponding to a frequency range of 3 to 30 MHz. This is just a symbol and is not related to allocation; the ITU further divides each band into subbands allocated to different services. Above 300 GHz, the absorption ofelectromagnetic radiationbyEarth's atmosphereis so great that the atmosphere is effectively opaque, until it becomes transparent again in thenear-infraredandoptical windowfrequency ranges.

TheseITU radio bandsare defined in theITURadio Regulations.Article 2, provision No. 2.1 states that "the radio spectrum shall be subdivided into nine frequency bands, which shall be designated by progressive whole numbers in accordance with the following table".[13]

The table originated with a recommendation of the fourthCCIRmeeting, held in Bucharest in 1937, and was approved by the International Radio Conference held at Atlantic City, NJ in 1947. The idea to give each band a number, in which the number is the logarithm of the approximate geometric mean of the upper and lower band limits in Hz, originated with B. C. Fleming-Williams, who suggested it in a letter to the editor ofWireless Engineerin 1942. For example, the approximate geometric mean of band 7 is 10 MHz, or 107Hz.[14]

The band name "tremendously low frequency" (TLF) has been used for frequencies from 1–3 Hz (wavelengths from 300,000–100,000 km),[15]but the term has not been defined by the ITU.[16]

Band name Abbreviation ITU band number Frequency and wavelength Example uses
Extremely low frequency ELF 1 3–30 Hz
100,000–10,000 km
Communication with submarines
Super low frequency SLF 2 30–300 Hz
10,000–1,000 km
Communication with submarines
Ultra low frequency ULF 3 300–3,000 Hz
1,000–100 km
Communication with submarines,communication within mines,landline telephony,fax machines,fiber-optic communication
Very low frequency VLF 4 3–30 kHz
100–10 km
Navigation,time signals,communication with submarines,landline telephony,wirelessheart rate monitors,geophysics
Low frequency LF 5 30–300 kHz
10–1 km
Navigation,time signals,AMlongwavebroadcasting (Europe and parts of Asia),RFID,amateur radio.
Medium frequency MF 6 300–3,000 kHz
1,000–100 m
AM(medium-wave) broadcasts, amateur radio,avalanche beacons,magnetic resonance imaging,positron emission tomography,electrical telegraph,wireless telegraphy,radioteletype,dial-up internet.
High frequency HF 7 3–30 MHz
100–10 m
Shortwavebroadcasts,citizens band radio,amateur radio,over-the-horizonaviation communications,RFID,over-the-horizon radar,automatic link establishment(ALE) /near-vertical incidence skywave(NVIS) radio communications,marine and mobile radio telephony,CT scan,magnetic resonance imaging,positron emission tomography,ultrasound,cordless phones.
Very high frequency VHF 8 30–300 MHz
10–1 m
FMbroadcasts,televisionbroadcasts, cable television broadcasting,radars,line-of-sightground-to-aircraft,aircraft-to-aircraft communications,emergency locator beaconhoming signal,radioteletype,land mobile and maritime mobile communications, amateur radio,police, fire and emergency medical services broadcasts,weather radio,CT scan,magnetic resonance imaging,positron emission tomography,ultrasound,cordless phones.
Ultra high frequency UHF 9 300–3,000 MHz
100–10 cm
Television broadcasts, cable television broadcasting,microwave oven,radars,microwavedevices/communications,radio astronomy,radars (L band),mobile phones,wireless LAN,Bluetooth,Zigbee,GPSand two-way radios such as land mobile,emergency locator beacon,FRSandGMRSradios, amateur radio,satellite radio,police, fire and emergency medical services broadcasts,remote control systems,ADSB,cordless phones,internet,dial-up internet,satellite broadcasting, communication satellites, weather satellites,satellite phones(L band), satellite phones (S band).
Super high frequency SHF 10 3–30 GHz
10–1 cm
Radio astronomy, microwave devices/communications, wireless LAN,DSRC,most modern radars,communications satellites,cable and satellite television broadcasting,DBS,amateur radio, satellite broadcasting, communication satellites, weather satellites, satellite radio,cordless phones,internet,satellite phones (S band).
Extremely high frequency EHF 11 30–300 GHz
10–1 mm
Radio astronomy, satellite broadcasting, communication satellites, weather satellites, high-frequencymicrowave radio relay,microwaveremote sensing,directed-energy weapon,millimeter wave scanner,Wireless Lan 802.11ad,internet.
Terahertzortremendously high frequency THF 12 300–3,000 GHz
1–0.1 mm
Experimental medical imaging to replace X-rays, ultrafast molecular dynamics,condensed-matter physics,terahertz time-domain spectroscopy,terahertz computing/communications,remote sensing

IEEE radar bands[edit]

Frequency bands in themicrowaverange are designated by letters. This convention began around World War II with military designations for frequencies used inradar,which was the first application of microwaves. There are several incompatible naming systems for microwave bands, and even within a given system the exact frequency range designated by a letter may vary somewhat between different application areas. One widely used standard is theIEEE radar bandsestablished by the USInstitute of Electrical and Electronics Engineers.

Radar-frequency bands according toIEEEstandard[17]
Band
designation
Frequency range Explanation of meaning of letters
HF 0.003 to 0.03 GHz High frequency[18]
VHF 0.03 to 0.3 GHz Very high frequency[18]
UHF 0.3 to 1 GHz Ultra-high frequency[18]
L 1 to 2 GHz Long wave
S 2 to 4 GHz Short wave
C 4 to 8 GHz Compromise between S and X
X 8 to 12 GHz Used in World War II forfire control,X for cross (as incrosshair). Exotic.[19]
Ku 12 to 18 GHz Kurz-under
K 18 to 27 GHz German:Kurz(short)
Ka 27 to 40 GHz Kurz-above
V 40 to 75 GHz
W 75 to 110 GHz W follows V in thealphabet[20]
mmorG 110 to 300 GHz[note 1] Millimeter[17]
  1. ^The designation mm is also used to refer to the range from 30 to 300 GHz.[17]

EU,NATO,US ECM frequency designations[edit]

NATO letter band designation[21][19][22] Broadcasting
band
designation
New nomenclature Old nomenclature
Band Frequency (MHz) Band Frequency (MHz)
A 0 – 250 I 100 – 150 Band I
47 – 68 MHz (TV)
Band II
87.5 – 108 MHz (FM)
G 150 – 225 Band III
174 – 230 MHz (TV)
B 250 – 500 P 225 – 390
C 500 – 1 000 L 390 – 1 550 Band IV
470 – 582 MHz (TV)
Band V
582 – 862 MHz (TV)
D 1 000 – 2 000 S 1 550 – 3 900
E 2 000 – 3 000
F 3 000 – 4 000
G 4 000 – 6 000 C 3 900 – 6 200
H 6 000 – 8 000 X 6 200 – 10 900
I 8 000 – 10 000
J 10 000 – 20 000 Ku 10 900 – 20 000
K 20 000 – 40 000 Ka 20 000 – 36 000
L 40 000 – 60 000 Q 36 000 – 46 000
V 46 000 – 56 000
M 60 000 – 100 000 W 56 000 – 100 000
US Military/SACLANT
N 100 000 – 200 000
O 100 000 – 200 000

Waveguide frequency bands[edit]

Band Frequency range[23]
R band 1.70 to 2.60 GHz
D band 2.20 to 3.30 GHz
S band 2.60 to 3.95 GHz
E band 3.30 to 4.90 GHz
G band 3.95 to 5.85 GHz
F band 4.90 to 7.05 GHz
C band 5.85 to 8.20 GHz
H band 7.05 to 10.10 GHz
X band 8.2 to 12.4 GHz
Kuband 12.4 to 18.0 GHz
K band 18.0 to 26.5 GHz
Kaband 26.5 to 40.0 GHz
Q band 33 to 50 GHz
U band 40 to 60 GHz
V band 50 to 75 GHz
E band 60 to 90 GHz
W band 75 to 110 GHz
F band 90 to 140 GHz
D band 110 to 170 GHz
Y band 325 to 500 GHz

Comparison of radio band designation standards[edit]

Comparison of frequency band designations

The frequencies from 1–3 Hz (wavelengths from 300,000–100,000 km) have been known by the band name "tremendously low frequency" (TLF),[15]but the term has not been defined by the ITU.[24]

Frequency IEEE[17] EU,
NATO,
US ECM
ITU
no. abbr.
A
3 Hz 1 ELF
30 Hz 2 SLF
300 Hz 3 ULF
3 kHz 4 VLF
30 kHz 5 LF
300 kHz 6 MF
3 MHz HF 7 HF
30 MHz VHF 8 VHF
250 MHz B
300 MHz UHF 9 UHF
500 MHz C
1 GHz L D
2 GHz S E
3 GHz F 10 SHF
4 GHz C G
6 GHz H
8 GHz X I
10 GHz J
12 GHz Ku
18 GHz K
20 GHz K
27 GHz Ka
30 GHz 11 EHF
40 GHz V L
60 GHz M
75 GHz W
100 GHz
110 GHz mm
300 GHz 12 THF
3 THz

Applications[edit]

Broadcasting[edit]

Broadcast frequencies:

Designations for television and FM radio broadcast frequencies vary between countries, seeTelevision channel frequenciesandFM broadcast band.Since VHF and UHF frequencies are desirable for many uses in urban areas, in North America some parts of the former television broadcasting band have been reassigned tocellular phoneand various land mobile communications systems. Even within the allocation still dedicated to television,TV-band devicesuse channels without local broadcasters.

TheApexband in the United States was a pre-WWII allocation for VHF audio broadcasting; it was made obsolete after the introduction of FM broadcasting.

Air band[edit]

Airbandrefers to VHF frequencies 108 to 137 MHz, used for navigation and voice communication with aircraft. Trans-oceanic aircraft also carryHFradio and satellite transceivers.

Marine band[edit]

The greatest incentive for development of radio was the need to communicate with ships out of visual range of shore. From the very early days of radio, large oceangoing vessels carried powerful long-wave and medium-wave transmitters. High-frequency allocations are still designated for ships, although satellite systems have taken over some of the safety applications previously served by500 kHzand other frequencies.2182 kHzis a medium-wave frequency still used for marine emergency communication.

Marine VHF radiois used in coastal waters and relatively short-range communication between vessels and to shore stations. Radios are channelized, with different channels used for different purposes; marine Channel 16 is used for calling and emergencies.

Amateur radio frequencies[edit]

Amateur radio frequency allocationsvary around the world. Several bands are common for amateurs worldwide, usually in theHFpart of the spectrum. Other bands are national or regional allocations only due to differing allocations for other services, especially in theVHFandUHFparts of the radio spectrum.

Citizens' band and personal radio services[edit]

Citizens' band radiois allocated in many countries, using channelized radios in the upper HF part of the spectrum (around 27 MHz). It is used for personal, small business and hobby purposes. Other frequency allocations are used for similar services in different jurisdictions, for exampleUHF CBis allocated in Australia. A wide range ofpersonal radio servicesexist around the world, usually emphasizing short-range communication between individuals or for small businesses, simplified license requirements or in some countries covered by a class license, and usually FM transceivers using around 1 watt or less.

Industrial, scientific, medical[edit]

TheISM bandswere initially reserved for non-communications uses of RF energy, such asmicrowave ovens,radio-frequency heating, and similar purposes. However, in recent years the largest use of these bands has been by short-range low-power communications systems, since users do not have to hold a radio operator's license.Cordless telephones,wireless computer networks,Bluetoothdevices, andgarage door openersall use the ISM bands. ISM devices do not have regulatory protection against interference from other users of the band.

Land mobile bands[edit]

Bands of frequencies, especially in the VHF and UHF parts of the spectrum, are allocated for communication between fixedbase stationsandland mobilevehicle-mounted orportabletransceivers. In the United States these services are informally known asbusiness bandradio. See alsoProfessional mobile radio.

Police radioand other public safety services such as fire departments and ambulances are generally found in the VHF and UHF parts of the spectrum.Trunkingsystems are often used to make most efficient use of the limited number of frequencies available.

The demand for mobile telephone service has led to large blocks of radio spectrum allocated tocellular frequencies.

Radio control[edit]

Reliableradio controluses bands dedicated to the purpose. Radio-controlled toys may use portions ofunlicensed spectrumin the 27 MHz or 49 MHz bands, but more costly aircraft, boat, or land vehicle models use dedicatedradio controlfrequencies near 72 MHz to avoid interference by unlicensed uses. The 21st century has seen a move to 2.4 GHz spread spectrum RC control systems.

Licensedamateur radiooperators use portions of the6-meter bandin North America. Industrial remote control of cranes or railway locomotives use assigned frequencies that vary by area.

Radar[edit]

Radarapplications use relatively high power pulse transmitters and sensitive receivers, so radar is operated on bands not used for other purposes. Most radar bands are in themicrowavepart of the spectrum, although certain important applications formeteorologymake use of powerful transmitters in the UHF band.

See also[edit]

Notes[edit]

  1. ^ITU Radio Regulations – Article 1, Definitions of Radio Services, Article 1.2 Administration: Any governmental department or service responsible for discharging the obligations undertaken in the Constitution of the International Telecommunication Union, in the Convention of the International Telecommunication Union and in the Administrative Regulations (CS 1002)
  2. ^International Telecommunication Union's Radio Regulations, Edition of 2020.
  3. ^Colin Robinson (2003).Competition and regulation in utility markets.Edward Elgar Publishing. p. 175.ISBN978-1-84376-230-0.Archivedfrom the original on 2022-04-07.Retrieved2020-11-02.
  4. ^abRadio waves are defined by the ITU as: "electromagnetic waves of frequencies arbitrarily lower than 3000 GHz, propagated in space without artificial guide",Radio Regulations, 2020 Edition.International Telecommunication Union.Archivedfrom the original on 2022-02-18.Retrieved2022-02-18.
  5. ^Radio Regulations, 2020 Edition.International Telecommunication Union.Archivedfrom the original on 2022-02-18.Retrieved2022-02-18.
  6. ^abcdeGosling, William (2000).Radio Spectrum Conservation: Radio Engineering Fundamentals.Newnes. pp. 11–14.ISBN9780750637404.Archivedfrom the original on 2022-04-07.Retrieved2019-11-25.
  7. ^Coutaz, Jean-Louis; Garet, Frederic; Wallace, Vincent P. (2018).Principles of Terahertz Time-Domain Spectroscopy: An Introductory Textbook.CRC Press. p. 18.ISBN9781351356367.Archivedfrom the original on 2023-02-21.Retrieved2021-05-20.
  8. ^Siegel, Peter (2002)."Studying the Energy of the Universe".Education materials.NASA website.Archivedfrom the original on 20 June 2021.Retrieved19 May2021.
  9. ^See detail of bands:[1]Archived2014-07-03 at theWayback Machine
  10. ^Frequency Plans
  11. ^For the authorized frequency bands for amateur radio use see:Authorized frequency bands
  12. ^US ARRL Amateur Radio Bands and power limitsGraphical Frequency Allocations
  13. ^ITU Radio Regulations, Volume 1, Article 2; Edition of 2020. Available online at"Article2.1:Frequency and wavelength bands "(PDF).Radio Regulations 2016 Edition.International Telecommunication Union. 1 January 2017.Archivedfrom the original on 18 February 2022.Retrieved18 February2020.
  14. ^Booth, C. F. (1949). "Nomenclature of Frequencies".The Post Office Electrical Engineers' Journal.42(1): 47–48.
  15. ^abDuncan, Christopher; Gkountouna, Olga; Mahabir, Ron (2021). Arabnia, Hamid R.; Deligiannidis, Leonidas; Shouno, Hayaru; Tinetti, Fernando G.; Tran, Quoc-Nam (eds.)."Theoretical Applications of Magnetic Fields at Tremendously Low Frequency in Remote Sensing and Electronic Activity Classification".Transactions on Computational Science and Computational Intelligence.Cham: Springer International Publishing: 235–247.doi:10.1007/978-3-030-71051-4_18.ISBN978-3-030-71050-7.
  16. ^"Nomenclature of the frequency and wavelength bands used in telecommunications"(PDF).International Telecommunications Union.Geneva, Switzerland: International Telecommunications Union. 2015.Retrieved7 April2023.
  17. ^abcdeIEEE Std 521-2002Standard Letter Designations for Radar-Frequency BandsArchived2013-12-21 at theWayback Machine.
  18. ^abcTable 2 in[17]
  19. ^abNorman Friedman (2006).The Naval Institute Guide to World Naval Weapon Systems.Naval Institute Press. pp. xiii.ISBN978-1-55750-262-9.Archivedfrom the original on 2023-02-21.Retrieved2016-10-13.
  20. ^Banday, Yusra; Mohammad Rather, Ghulam; Begh, Gh. Rasool (February 2019)."Effect of atmospheric absorption on millimetre wave frequencies for 5G cellular networks".IET Communications.13(3): 265–270.doi:10.1049/iet-com.2018.5044.ISSN1751-8636.
  21. ^Leonid A. Belov; Sergey M. Smolskiy; Victor N. Kochemasov (2012).Handbook of RF, Microwave, and Millimeter-Wave Components.Artech House. pp. 27–28.ISBN978-1-60807-209-5.
  22. ^NATO Allied Radio Frequency Agency (ARFA) HANDBOOK – VOLUME I; PART IV – APPENDICES,... G-2,... NOMENCLATURE OF THE FREQUENCY AND WAVELENGTH BANDS USED IN RADIOCOMMUNCATION.
  23. ^"www.microwaves101.com" Waveguide frequency bands and interior dimensions "".Archived fromthe originalon 2008-02-08.Retrieved2009-11-16.
  24. ^"Nomenclature of the frequency and wavelength bands used in telecommunications"(PDF).International Telecommunications Union.Geneva, Switzerland: International Telecommunications Union. 2015.Retrieved7 April2023.

References[edit]

External links[edit]