Jump to content

Biological dark matter

From Wikipedia, the free encyclopedia

Biological dark matteris an informal term for unclassified or poorly understoodgenetic material.This genetic material may refer to genetic material produced by unclassifiedmicroorganisms.By extension, biological dark matter may also refer to the un-isolated microorganisms whose existence can only be inferred from the genetic material that they produce. Some of the genetic material may not fall under the three existing domains of life:Bacteria,ArchaeaandEukaryota;thus, it has been suggested that a possible fourth domain of life may yet be discovered,[1][2]although other explanations are also probable. Alternatively, the genetic material may refer tonon-coding DNA(so-called "junk DNA" )[3][4][5]andnon-coding RNAproduced by known organisms.[6][7][8]

Genomic dark matter

[edit]

Much of the genomic dark matter is thought to originate from ancienttransposable elementsand from other low-complexity repetitive elements.[9][10]Uncategorizedgenetic materialis found inhumansand many other species.[1][11]Theirphylogeneticnovelty could indicate the cellularorganismsorvirusesfrom which they evolved.[12]

Unclassified microorganisms

[edit]

Up to 99% of all livingmicroorganismscannot becultured,[13][14][15][16][17]so few functional insights exist about themetabolic potentialof these organisms.

Sequences that are believed to be derived from unknown microbes are referred to as the microbial dark matter,[18]the darkvirome,[19]or dark matter fungi.[20]Such sequences are not rare. It has been estimated that in material from humans, between 40 and 90% of viral sequences are from dark matter.[21][22][23]Human blood contains over three thousand different DNA sequences which cannot yet be identified.[24]A mycological study from 2023 found that dark matter fungi seem to dominate the fungal kingdom.[25]

Algorithms have been developed that examine sequences for similarities to bacterial16S RNAsequences,[26]K-mersimilarities to known viruses,[27]specific features ofcodonusage,[28]or for inferring the existence of proteins.[29]These approaches have suggested, for example, the existence of a novelbacteriophageof themicroviridaefamily,[29]and a novel bacterioidales-like phage.[30]Other studies have suggested the existence of 264 new viral genera, discovered in publicly available databases,[31]and a study of human blood suggested that 42% of people have at least one previously unknown virus each, adding up to 19 different new genera.[32]A comprehensive study of DNA sequences from multiple human samples inferred the existence of 4,930 species of microbes of which 77% were previously unreported.[33]Health-related findings include aprophagethat might be associated withcirrhosis of the liver,[27]and seven novel sequences from children withtype-1 diabetesthat have characteristics of viruses.[34]Although they might exist, no organisms that clearly cause human disease have been discovered in the dark matter.

In February 2023, scientists reported the findings of unusual DNA strands from the microorganisms in the "dark microbiome" in thedriest non-polar deserton Earth.[35][36]

See also

[edit]

References

[edit]
  1. ^abWu D, Wu M, Halpern A, Rusch DB, Yooseph S, Frazier M, Venter JC, Eisen JA (March 2011)."Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees".PLOS ONE.6(3): e18011.Bibcode:2011PLoSO...618011W.doi:10.1371/journal.pone.0018011.PMC3060911.PMID21437252.
  2. ^Lopez P, Halary S, Bapteste E (October 2015)."Highly divergent ancient gene families in metagenomic samples are compatible with additional divisions of life".Biology Direct.10:64.doi:10.1186/s13062-015-0092-3.PMC4624368.PMID26502935.
  3. ^Carey N(2015).Junk DNA: A Journey Through the Dark Matter of the Genome.Columbia University Press.ISBN9780231170840.
  4. ^Kolata G (5 September 2012)."Bits of Mystery DNA, Far From 'Junk', Play Crucial Role".The New York Times.Retrieved2015-09-09.
  5. ^Boyle R (6 September 2012)."Inside the Mysterious Dark Matter of the Human Genome".Popular Science.Retrieved2015-09-09.
  6. ^Pugh BF, Voss K (13 September 2013)."Scientists Discover the Origins of Genomic" Dark Matter "".Penn State Science.Archived fromthe originalon 2015-09-08.Retrieved2015-09-09.
  7. ^"Scientists shed some light on biological" dark matter "".Ecole Polytechnique Federale de Lausanne.20 January 2014.Retrieved2015-09-09.
  8. ^van Bakel H, Nislow C, Blencowe BJ, Hughes TR (May 2010). Eddy SR (ed.)."Most" dark matter "transcripts are associated with known genes".PLOS Biology.8(5): e1000371.doi:10.1371/journal.pbio.1000371.PMC2872640.PMID20502517.
  9. ^de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (December 2011)."Repetitive elements may comprise over two-thirds of the human genome".PLOS Genetics.7(12): e1002384.doi:10.1371/journal.pgen.1002384.PMC3228813.PMID22144907.
  10. ^Maumus F, Quesneville H (2014)."Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter".PLOS ONE.9(4): e94101.Bibcode:2014PLoSO...994101M.doi:10.1371/journal.pone.0094101.PMC3978025.PMID24709859.
  11. ^Barras C (March 18, 2011)."Biology's 'dark matter' hints at fourth domain of life".New Scientist.209(2805). Reed Business Information Ltd.: 16.Bibcode:2011NewSc.209Q..16B.doi:10.1016/S0262-4079(11)60657-X.RetrievedAugust 23,2015.
  12. ^Kemsley T (13 July 2015)."New Study on" Dark Matter "of Biology Fills in Major Holes in Tree of Life".Nature World News.Retrieved2015-09-09.
  13. ^Huang WE, Song Y, Xu J (January 2015)."Single cell biotechnology to shed a light on biological 'dark matter' in nature".Microbial Biotechnology.8(1): 15–16.doi:10.1111/1751-7915.12249.PMC4321360.PMID25627841.
  14. ^Lok C (16 June 2015)."Mining the microbial dark matter".Nature News.Retrieved2015-09-09.
  15. ^Check-Hayden E (14 July 2013)."Researchers glimpse microbial 'dark matter'".Nature News.Retrieved2015-09-09.
  16. ^Gronstal AL (4 November 2011)."Studying Biology's Dark Matter".NASA Astrobiology Institute.Retrieved2015-09-09.
  17. ^Rinke C (2015)."What is Microbial Dark Matter and why should we explore it?".Microbial Dark Matter.Archived fromthe originalon 2018-10-22.Retrieved2015-09-09.
  18. ^Lok C (June 2015)."Mining the microbial dark matter".Nature.522(7556): 270–73.Bibcode:2015Natur.522..270L.doi:10.1038/522270a.PMID26085253.
  19. ^Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, Minot S, Bushman FD, Grice EA (October 2015)."The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome".mBio.6(5): e01578-15.doi:10.1128/mBio.01578-15.PMC4620475.PMID26489866.
  20. ^Ryberg M, Nilsson RH (2018)."New light on names and naming of dark taxa".MycoKeys.30(30): 31–39.doi:10.3897/mycokeys.30.24376.PMC5904500.PMID29681731.
  21. ^Aggarwala V, Liang G, Bushman FD (2017)."Viral communities of the human gut: metagenomic analysis of composition and dynamics".Mobile DNA.8:12.doi:10.1186/s13100-017-0095-y.PMC5627405.PMID29026445.
  22. ^Kramná L, Kolářová K, Oikarinen S, Pursiheimo JP, Ilonen J, Simell O, Knip M, Veijola R, Hyöty H, Cinek O (May 2015)."Gut virome sequencing in children with early islet autoimmunity".Diabetes Care.38(5): 930–33.doi:10.2337/dc14-2490.PMID25678103.
  23. ^Krishnamurthy SR, Wang D (July 2017). "Origins and challenges of viral dark matter".Virus Research.239:136–42.doi:10.1016/j.virusres.2017.02.002.PMID28192164.
  24. ^Kowarsky M, Camunas-Soler J, Kertesz M, De Vlaminck I, Koh W, Pan W, Martin L, Neff NF, Okamoto J, Wong RJ, Kharbanda S, El-Sayed Y, Blumenfeld Y,Stevenson DK,Shaw GM, Wolfe ND, Quake SR (September 2017)."Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA".Proceedings of the National Academy of Sciences of the United States of America.114(36): 9623–28.Bibcode:2017PNAS..114.9623K.doi:10.1073/pnas.1707009114.PMC5594678.PMID28830999.
  25. ^Nilsson RH, Ryberg M, Wurzbacher C, Tedersoo L, Anslan S, Põlme S, Spirin V, Mikryukov V, Svantesson S, Hartmann M, Lennartsdotter C, Belford P, Khomich M, Retter A, Corcoll N, Gómez Martinez D, Jansson T, Ghobad-Nejhad M, Vu D, Sanchez-Garcia M, Kristiansson E, Abarenkov K (2023)."How, not if, is the question mycologists should be asking about DNA-based typification".MycoKeys.30(96): 143–157.doi:10.3897/mycokeys.96.102669.hdl:10138/357843.PMC10194844.PMID37214179.
  26. ^Bowman JS (2018)."Identification of Microbial Dark Matter in Antarctic Environments".Frontiers in Microbiology.9:3165.doi:10.3389/fmicb.2018.03165.PMC6305705.PMID30619224.
  27. ^abRen J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F (July 2017)."VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data".Microbiome.5(1): 69.doi:10.1186/s40168-017-0283-5.PMC5501583.PMID28683828.
  28. ^Bzhalava Z, Tampuu A, Bała P, Vicente R, Dillner J (September 2018)."Machine Learning for detection of viral sequences in human metagenomic datasets".BMC Bioinformatics.19(1): 336.doi:10.1186/s12859-018-2340-x.PMC6154907.PMID30249176.
  29. ^abBarrientos-Somarribas M, Messina DN, Pou C, Lysholm F, Bjerkner A, Allander T, Andersson B, Sonnhammer EL (January 2018)."Discovering viral genomes in human metagenomic data by predicting unknown protein families".Scientific Reports.8(1): 28.Bibcode:2018NatSR...8...28B.doi:10.1038/s41598-017-18341-7.PMC5758519.PMID29311716.
  30. ^Ogilvie LA, Bowler LD, Caplin J, Dedi C, Diston D, Cheek E, Taylor H, Ebdon JE, Jones BV (2013)."Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences".Nature Communications.4:2420.Bibcode:2013NatCo...4.2420O.doi:10.1038/ncomms3420.PMC3778543.PMID24036533.
  31. ^Roux S, Hallam SJ, Woyke T, Sullivan MB (July 2015)."Viral dark matter and virus-host interactions resolved from publicly available microbial genomes".eLife.4.doi:10.7554/eLife.08490.PMC4533152.PMID26200428.
  32. ^Moustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, Bloom K, Delwart E, Nelson KE, Venter JC, Telenti A (March 2017)."The blood DNA virome in 8,000 humans".PLOS Pathogens.13(3): e1006292.doi:10.1371/journal.ppat.1006292.PMC5378407.PMID28328962.
  33. ^Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P, Collado MC, Rice BL, DuLong C, Morgan XC, Golden CD, Quince C, Huttenhower C, Segata N (January 2019)."Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle".Cell.176(3): 649–662.e20.doi:10.1016/j.cell.2019.01.001.PMC6349461.PMID30661755.
  34. ^Cinek O, Kramna L, Lin J, Oikarinen S, Kolarova K, Ilonen J, Simell O, Veijola R, Autio R, Hyöty H (November 2017)."Imbalance of bacteriome profiles within the Finnish Diabetes Prediction and Prevention study: Parallel use of 16S profiling and virome sequencing in stool samples from children with islet autoimmunity and matched controls".Pediatric Diabetes.18(7): 588–98.doi:10.1111/pedi.12468.PMID27860030.S2CID19106167.
  35. ^Achenbach, Joel (21 February 2023)."Strange DNA found in the desert offers lessons in the hunt for Mars life".The Washington Post.Retrieved21 February2023.
  36. ^Azua-Bustos, Armando; et al. (21 February 2023)."Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits".Nature Communications.14(808): 808.Bibcode:2023NatCo..14..808A.doi:10.1038/s41467-023-36172-1.PMC9944251.PMID36810853.