Theorem in stochastic analysis
Inmathematics — specifically, instochastic analysis —Dynkin's formula is a theorem giving theexpected value of any suitably smooth function applied to aFeller process at astopping time .It may be seen as a stochastic generalization of the (second)fundamental theorem of calculus .It is named after theRussian mathematician Eugene Dynkin .
Statement of the theorem [ edit ]
Let
X
{\displaystyle X}
be a Feller process withinfinitesimal generator
A
{\displaystyle A}
.
For a point
x
{\displaystyle x}
in the state-space of
X
{\displaystyle X}
,let
P
x
{\displaystyle \mathbf {P} ^{x}}
denote the law of
X
{\displaystyle X}
given initial datum
X
0
=
x
{\displaystyle X_{0}=x}
,and let
E
x
{\displaystyle \mathbf {E} ^{x}}
denote expectation with respect to
P
x
{\displaystyle \mathbf {P} ^{x}}
.
Then for any function
f
{\displaystyle f}
in the domain of
A
{\displaystyle A}
,and anystopping time
τ
{\displaystyle \tau }
with
E
[
τ
]
<
+
∞
{\displaystyle \mathbf {E} [\tau ]<+\infty }
,Dynkin's formula holds:[ 1]
E
x
[
f
(
X
τ
)
]
=
f
(
x
)
+
E
x
[
∫
0
τ
A
f
(
X
s
)
d
s
]
.
{\displaystyle \mathbf {E} ^{x}[f(X_{\tau })]=f(x)+\mathbf {E} ^{x}\left[\int _{0}^{\tau }Af(X_{s})\,\mathrm {d} s\right].}
Example: Itô diffusions[ edit ]
Let
X
{\displaystyle X}
be the
R
n
{\displaystyle \mathbf {R} ^{n}}
-valuedItô diffusion solving thestochastic differential equation
d
X
t
=
b
(
X
t
)
d
t
+
σ
(
X
t
)
d
B
t
.
{\displaystyle \mathrm {d} X_{t}=b(X_{t})\,\mathrm {d} t+\sigma (X_{t})\,\mathrm {d} B_{t}.}
The infinitesimal generator
A
{\displaystyle A}
of
X
{\displaystyle X}
is defined by its action oncompactly-supported
C
2
{\displaystyle C^{2}}
(twice differentiable with continuous second derivative) functions
f
:
R
n
→
R
{\displaystyle f:\mathbf {R} ^{n}\to \mathbf {R} }
as[ 2]
A
f
(
x
)
=
lim
t
↓
0
E
x
[
f
(
X
t
)
]
−
f
(
x
)
t
{\displaystyle Af(x)=\lim _{t\downarrow 0}{\frac {\mathbf {E} ^{x}[f(X_{t})]-f(x)}{t}}}
or, equivalently,[ 3]
A
f
(
x
)
=
∑
i
b
i
(
x
)
∂
f
∂
x
i
(
x
)
+
1
2
∑
i
,
j
(
σ
σ
⊤
)
i
,
j
(
x
)
∂
2
f
∂
x
i
∂
x
j
(
x
)
.
{\displaystyle Af(x)=\sum _{i}b_{i}(x){\frac {\partial f}{\partial x_{i}}}(x)+{\frac {1}{2}}\sum _{i,j}{\big (}\sigma \sigma ^{\top }{\big )}_{i,j}(x){\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}(x).}
Since this
X
{\displaystyle X}
is a Feller process, Dynkin's formula holds.[ 4]
In fact, if
τ
{\displaystyle \tau }
is the first exit time of abounded set
B
⊂
R
n
{\displaystyle B\subset \mathbf {R} ^{n}}
with
E
[
τ
]
<
+
∞
{\displaystyle \mathbf {E} [\tau ]<+\infty }
,then Dynkin's formula holds for all
C
2
{\displaystyle C^{2}}
functions
f
{\displaystyle f}
,without the assumption of compact support.[ 4]
Application: Brownian motion exiting the ball [ edit ]
Dynkin's formula can be used to find the expected first exit time
τ
K
{\displaystyle \tau _{K}}
of aBrownian motion
B
{\displaystyle B}
from theclosed ball
K
=
{
x
∈
R
n
:
|
x
|
≤
R
}
,
{\displaystyle K=\{x\in \mathbf {R} ^{n}:\,|x|\leq R\},}
which, when
B
{\displaystyle B}
starts at a point
a
{\displaystyle a}
in theinterior of
K
{\displaystyle K}
,is given by
E
a
[
τ
K
]
=
1
n
(
R
2
−
|
a
|
2
)
.
{\displaystyle \mathbf {E} ^{a}[\tau _{K}]={\frac {1}{n}}{\big (}R^{2}-|a|^{2}{\big )}.}
This is shown as follows.[ 5] Fix aninteger j .The strategy is to apply Dynkin's formula with
X
=
B
{\displaystyle X=B}
,
τ
=
σ
j
=
min
{
j
,
τ
K
}
{\displaystyle \tau =\sigma _{j}=\min\{j,\tau _{K}\}}
,and a compactly-supported
f
∈
C
2
{\displaystyle f\in C^{2}}
with
f
(
x
)
=
|
x
|
2
{\displaystyle f(x)=|x|^{2}}
on
K
{\displaystyle K}
.The generator of Brownian motion is
Δ
/
2
{\displaystyle \Delta /2}
,where
Δ
{\displaystyle \Delta }
denotes theLaplacian operator .Therefore, by Dynkin's formula,
E
a
[
f
(
B
σ
j
)
]
=
f
(
a
)
+
E
a
[
∫
0
σ
j
1
2
Δ
f
(
B
s
)
d
s
]
=
|
a
|
2
+
E
a
[
∫
0
σ
j
n
d
s
]
=
|
a
|
2
+
n
E
a
[
σ
j
]
.
{\displaystyle {\begin{aligned}\mathbf {E} ^{a}\left[f{\big (}B_{\sigma _{j}}{\big )}\right]&=f(a)+\mathbf {E} ^{a}\left[\int _{0}^{\sigma _{j}}{\frac {1}{2}}\Delta f(B_{s})\,\mathrm {d} s\right]\\&=|a|^{2}+\mathbf {E} ^{a}\left[\int _{0}^{\sigma _{j}}n\,\mathrm {d} s\right]=|a|^{2}+n\mathbf {E} ^{a}[\sigma _{j}].\end{aligned}}}
Hence, for any
j
{\displaystyle j}
,
E
a
[
σ
j
]
≤
1
n
(
R
2
−
|
a
|
2
)
.
{\displaystyle \mathbf {E} ^{a}[\sigma _{j}]\leq {\frac {1}{n}}{\big (}R^{2}-|a|^{2}{\big )}.}
Now let
j
→
+
∞
{\displaystyle j\to +\infty }
to conclude that
τ
K
=
lim
j
→
+
∞
σ
j
<
+
∞
{\displaystyle \tau _{K}=\lim _{j\to +\infty }\sigma _{j}<+\infty }
almost surely ,and so
E
a
[
τ
K
]
=
(
R
2
−
|
a
|
2
)
/
n
{\displaystyle \mathbf {E} ^{a}[\tau _{K}]=(R^{2}-|a|^{2})/n}
as claimed.
^ Kallenberg (2021), Lemma 17.21, p383.
^ Øksendal (2003), Definition 7.3.1, p124.
^ Øksendal (2003), Theorem 7.3.3, p126.
^a b Øksendal (2003), Theorem 7.4.1, p127.
^ Øksendal (2003), Example 7.4.2, p127.
Sources
Dynkin, Eugene B. ;trans. J. Fabius; V. Greenberg; A. Maitra; G. Majone (1965).Markov processes. Vols. I, II .Die Grundlehren der Mathematischen Wissenschaften, Bände 121. New York: Academic Press Inc. (See Vol. I, p. 133)
Kallenberg, Olav (2021).Foundations of Modern Probability (third ed.). Springer.ISBN 978-3-030-61870-4 .
Øksendal, Bernt K. (2003).Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Berlin: Springer.ISBN 3-540-04758-1 . (See Section 7.4)