Jump to content

Euler's constant

From Wikipedia, the free encyclopedia
(Redirected fromEuler constant)

Euler's constant
γ
0.57721...[1]
General information
TypeUnknown
Fields
History
Discovered1734
ByLeonhard Euler
First mentionDe Progressionibus harmonicis observationes
Named after
The area of the blue region converges to Euler's constant.

Euler's constant(sometimes called theEuler–Mascheroni constant) is amathematical constant,usually denoted by the lowercase Greek lettergamma(γ), defined as thelimitingdifference between theharmonic seriesand thenatural logarithm,denoted here bylog:

Here,⌊·⌋represents thefloor function.

The numerical value of Euler's constant, to 50 decimal places, is:[1]

0.57721566490153286060651209008240243104215933593992...

History

[edit]

The constant first appeared in a 1734 paper by theSwissmathematicianLeonhard Euler,titledDe Progressionibus harmonicis observationes(Eneström Index 43). Euler used the notationsCandOfor the constant. In 1790, theItalianmathematicianLorenzo Mascheroniused the notationsAandafor the constant. The notationγappears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time, perhaps because of the constant's connection to thegamma function.[2]For example, theGermanmathematicianCarl Anton Bretschneiderused the notationγin 1835,[3]andAugustus De Morganused it in a textbook published in parts from 1836 to 1842.[4]

Appearances

[edit]

Euler's constant appears, among other places, in the following (where '*' means that this entry contains an explicit equation):

Properties

[edit]

The numberγhas not been provedalgebraicortranscendental.In fact, it is not even known whetherγisirrational.Using acontinued fractionanalysis, Papanikolaou showed in 1997 that ifγisrational,its denominator must be greater than 10244663.[7][8]The ubiquity ofγrevealed by the large number of equations below makes the irrationality ofγa major open question in mathematics.[9]

Unsolved problem in mathematics:
Is Euler's constant irrational? If so, is it transcendental?

However, some progress has been made. Kurt Mahler showed in 1968 that the numberis transcendental (here,andareBessel functions).[10][2]In 2009 Alexander Aptekarev proved that at least one of Euler's constantγand theEuler–Gompertz constantδis irrational;[11]Tanguy Rivoal proved in 2012 that at least one of them is transcendental.[12]It is known that the transcendence degree of the fieldis at least two.[2]In 2010M. Ram Murtyand N. Saradha showed that at most one of the numbers of the form

withq≥ 2and1 ≤a<qis algebraic; this family includes the special caseγ(2,4) =γ/4.[2][13]In 2013 M. Ram Murty and A. Zaytseva found a different family containingγ,which is based on sums of reciprocals of integers not divisible by a fixed list of primes, with the same property.[2][14]

Euler's constant is conjectured not to be analgebraic period.[2]

Formulas and identities

[edit]

Relation to gamma function

[edit]

γis related to thedigamma functionΨ,and hence thederivativeof thegamma functionΓ,when both functions are evaluated at 1. Thus:

This is equal to the limits:

Further limit results are:[15]

A limit related to thebeta function(expressed in terms ofgamma functions) is

Relation to the zeta function

[edit]

γcan also be expressed as aninfinite sumwhose terms involve theRiemann zeta functionevaluated at positive integers:

The constantcan also be expressed in terms of the sum of the reciprocals ofnon-trivial zerosof the zeta function:[16]

Other series related to the zeta function include:

The error term in the last equation is a rapidly decreasing function ofn.As a result, the formula is well-suited for efficient computation of the constant to high precision.

Other interesting limits equaling Euler's constant are the antisymmetric limit:[17]

and the following formula, established in 1898 byde la Vallée-Poussin:

where⌈ ⌉areceilingbrackets. This formula indicates that when taking any positive integernand dividing it by each positive integerkless thann,the average fraction by which the quotientn/kfalls short of the next integer tends toγ(rather than 0.5) asntends to infinity.

Closely related to this is therational zeta seriesexpression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit:

whereζ(s,k)is theHurwitz zeta function.The sum in this equation involves theharmonic numbers,Hn.Expanding some of the terms in the Hurwitz zeta function gives:

where0 <ε<1/252n6.

γcan also be expressed as follows whereAis theGlaisher–Kinkelin constant:

γcan also be expressed as follows, which can be proven by expressing thezeta functionas aLaurent series:

Relation to triangular numbers

[edit]

Numerous formulations have been derived that expressin terms of sums and logarithms oftriangular numbers.[18][19][20][21]One of the earliest of these is a formula[22][23]for thethharmonic numberattributed toSrinivasa Ramanujanwhereis related toin a series that considers the powers of(an earlier, less-generalizable proof[24][25]byErnesto Cesàrogives the first two terms of the series, with an error term):

FromStirling's approximation[18][26]follows a similar series:

The series of inverse triangular numbers also features in the study of theBasel problem[27][28]posed byPietro Mengoli.Mengoli proved that,a resultJacob Bernoullilater used to estimate thevalueof,placing it betweenand.This identity appears in a formula used byBernhard Riemannto computeroots of the zeta function,[29]whereis expressed in terms of the sum of rootsplus the difference between Boya's expansion and the series of exactunit fractions:

Integrals

[edit]

γequals the value of a number of definiteintegrals:

whereHxis thefractional harmonic number,andis thefractional partof.

The third formula in the integral list can be proved in the following way:

The integral on the second line of the equation stands for theDebye functionvalue of+∞,which ism!ζ(m+ 1).

Definite integrals in whichγappears include:

One can expressγusing a special case ofHadjicostas's formulaas adouble integral[9][30]with equivalent series:

An interesting comparison by Sondow[30]is the double integral and alternating series

It shows thatlog4/πmay be thought of as an "alternating Euler constant".

The two constants are also related by the pair of series[31]

whereN1(n)andN0(n)are the number of 1s and 0s, respectively, in thebase 2expansion ofn.

We also haveCatalan's 1875 integral[32]

Series expansions

[edit]

In general,

for anyα> −n.However, the rate of convergence of this expansion depends significantly onα.In particular,γn(1/2)exhibits much more rapid convergence than the conventional expansionγn(0).[33][34]This is because

while

Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below.

Euler showed that the followinginfinite seriesapproachesγ:

The series forγis equivalent to a seriesNielsenfound in 1897:[15][35]

In 1910,Vaccafound the closely related series[36][37][38][39][40][15][41]

wherelog2is thelogarithm to base 2andis thefloor function.

This can be generalized to:[42]

where:

In 1926 Vacca found a second series:

From theMalmstenKummerexpansion for the logarithm of the gamma function[43]we get:

Ramanujan, in hislost notebookgave a series that approachesγ[44]:

An important expansion for Euler's constant is due toFontanaandMascheroni

whereGnareGregory coefficients.[15][41][45]This series is the special casek= 1of the expansions

convergent fork= 1, 2,...

A similar series with the Cauchy numbers of the second kindCnis[41][46]

Blagouchine (2018) found an interesting generalisation of the Fontana–Mascheroni series

whereψn(a)are theBernoulli polynomials of the second kind,which are defined by the generating function

For any rationalathis series contains rational terms only. For example, ata= 1,it becomes[47][48]

Other series with the same polynomials include these examples:

and

whereΓ(a)is thegamma function.[45]

A series related to the Akiyama–Tanigawa algorithm is

whereGn(2)are theGregory coefficientsof the second order.[45]

As a series ofprime numbers:

Asymptotic expansions

[edit]

γequals the following asymptotic formulas (whereHnis thenthharmonic number):

  • (Euler)
  • (Negoi)
  • (Cesàro)

The third formula is also called the Ramanujan expansion.

Alabdulmohsin derived closed-form expressions for the sums of errors of these approximations.[46]He showed that (Theorem A.1):

Exponential

[edit]

The constanteγis important in number theory. Its numerical value is:[49]

1.78107241799019798523650410310717954916964521430343....

eγequals the followinglimit,wherepnis thenthprime number:

This restates the third ofMertens' theorems.[50]

We further have the following product involving the three constantse,πandγ:[51]

Otherinfinite productsrelating toeγinclude:

These products result from theBarnesG-function.

In addition,

where thenth factor is the(n+ 1)th root of

This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow usinghypergeometric functions.[52]

It also holds that[53]

Ifeγis a rational number, then its denominator must be greater than 1015000.[2]

Continued fraction

[edit]

The simplecontinued fractionexpansion of Euler's constant is given by:[54]

which has noapparentpattern. It is known to have at least 4,800,000,000 terms,[55]and it has infinitely many termsif and only ifγis irrational.

Numerical evidence suggests that Euler's constant is among the numbers for which thegeometric meanof the continued fraction terms converges toKhinchin's constant.Similarly, whenare the convergents of the continued fraction, the limitappears to converge toLévy's constant.However neither of these limits has been proven.[55]

Generalizations

[edit]

Stieltjes constants

[edit]
Euler's generalized constantsabm(-)forα> 0.

Euler's generalized constantsare given by

for0 <α< 1,withγas the special caseα= 1.[56]Extending forα> 1gives:

with again the limit:

This can be further generalized to

for some arbitrary decreasing functionf.Setting

gives rise to theStieltjes constants,that occur in theLaurent seriesexpansion of theRiemann zeta function:

with

n approximate value of γn OEIS
0 +0.5772156649015 A001620
1 −0.0728158454836 A082633
2 −0.0096903631928 A086279
3 +0.0020538344203 A086280
4 +0.0023253700654 A086281
100 −4.2534015717080 × 1017
1000 −1.5709538442047 × 10486

Euler-Lehmer constants

[edit]

Euler–Lehmer constantsare given by summation of inverses of numbers in a common modulo class:[13]

The basic properties are

and if thegreatest common divisorgcd(a,q) =dthen

Euler-constant function

[edit]

The Euler-constant function can be defined as:[57]forwhich generalizes the series for Euler's constant forand the ''alternating constant'' for.It's domain can be extended via the following integral for:This gives among others the following specific values:[57][58]

whereisSomos' quadratic recurrence constantandis Glaisher's constant.

Masser-Gramain constant

[edit]

A two-dimensional generalization of Euler's constant is theMasser-Gramain constant.It is defined as the following limiting difference:[59]

whereis the smallest radius of a disk in the complex plane containing at leastGaussian integers.

The following bounds have been established:.[60]

Published digits

[edit]

Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th–22nd and 31st–32nd decimal places; starting from the 20th digit, he calculated...1811209008239when the correct value is...0651209008240.

Published decimal expansions ofγ
Date Decimal digits Author Sources
1734 5 Leonhard Euler
1735 15 Leonhard Euler
1781 16 Leonhard Euler
1790 32 Lorenzo Mascheroni,with 20–22 and 31–32 wrong
1809 22 Johann G. von Soldner
1811 22 Carl Friedrich Gauss
1812 40 Friedrich Bernhard Gottfried Nicolai
1857 34 Christian Fredrik Lindman
1861 41 Ludwig Oettinger
1867 49 William Shanks
1871 99 James W.L. Glaisher
1871 101 William Shanks
1877 262 J. C. Adams
1952 328 John William Wrench Jr.
1961 1050 Helmut Fischer andKarl Zeller
1962 1271 Donald Knuth [61]
1962 3566 Dura W. Sweeney
1973 4879 William A. Beyer andMichael S. Waterman
1977 20700 Richard P. Brent
1980 30100 Richard P. Brent &Edwin M. McMillan
1993 172000 Jonathan Borwein
1999 108000000 Patrick Demichel and Xavier Gourdon
March 13, 2009 29844489545 Alexander J. Yee & Raymond Chan [62][63]
December 22, 2013 119377958182 Alexander J. Yee [63]
March 15, 2016 160000000000 Peter Trueb [63]
May 18, 2016 250000000000 Ron Watkins [63]
August 23, 2017 477511832674 Ron Watkins [63]
May 26, 2020 600000000100 Seungmin Kim & Ian Cutress [63][64]
May 13, 2023 700000000000 Jordan Ranous & Kevin O'Brien [63]
September 7, 2023 1337000000000 Andrew Sun [63]

See also

[edit]

References

[edit]
  • Bretschneider, Carl Anton (1837) [1835]."Theoriae logarithmi integralis lineamenta nova".Crelle's Journal(in Latin).17:257–285.
  • Havil, Julian (2003).Gamma: Exploring Euler's Constant.Princeton University Press.ISBN978-0-691-09983-5.
  • Lagarias, Jeffrey C. (2013). "Euler's constant: Euler's work and modern developments".Bulletin of the American Mathematical Society.50(4): 556.arXiv:1303.1856.doi:10.1090/s0273-0979-2013-01423-x.S2CID119612431.

Footnotes

[edit]
  1. ^abSloane, N. J. A.(ed.)."Sequence A001620 (Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.
  2. ^abcdefgLagarias 2013.
  3. ^Bretschneider 1837,"γ=c=0,5772156649015328606181120900823..."onp. 260.
  4. ^De Morgan, Augustus(1836–1842).The differential and integral calculus.London: Baldwin and Craddoc. "γ"onp. 578.
  5. ^Caves, Carlton M.;Fuchs, Christopher A. (1996). "Quantum information: How much information in a state vector?".The Dilemma of Einstein, Podolsky and Rosen – 60 Years Later.Israel Physical Society.arXiv:quant-ph/9601025.Bibcode:1996quant.ph..1025C.ISBN9780750303941.OCLC36922834.
  6. ^Connallon, Tim; Hodgins, Kathryn A. (October 2021). "Allen Orr and the genetics of adaptation".Evolution.75(11): 2624–2640.doi:10.1111/evo.14372.PMID34606622.S2CID238357410.
  7. ^Haible, Bruno; Papanikolaou, Thomas (1998). "Fast multiprecision evaluation of series of rational numbers". In Buhler, Joe P. (ed.).Algorithmic Number Theory.Lecture Notes in Computer Science. Vol. 1423. Springer. pp. 338–350.doi:10.1007/bfb0054873.ISBN9783540691136.
  8. ^Papanikolaou, T. (1997).Entwurf und Entwicklung einer objektorientierten Bibliothek für algorithmische Zahlentheorie(Thesis) (in German). Universität des Saarlandes.
  9. ^abSee alsoSondow, Jonathan (2003). "Criteria for irrationality of Euler's constant".Proceedings of the American Mathematical Society.131(11): 3335–3344.arXiv:math.NT/0209070.doi:10.1090/S0002-9939-03-07081-3.S2CID91176597.
  10. ^Mahler, Kurt; Mordell, Louis Joel (4 June 1968). "Applications of a theorem by A. B. Shidlovski".Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.305(1481): 149–173.Bibcode:1968RSPSA.305..149M.doi:10.1098/rspa.1968.0111.S2CID123486171.
  11. ^Aptekarev, A. I. (28 February 2009). "On linear forms containing the Euler constant".arXiv:0902.1768[math.NT].
  12. ^Rivoal, Tanguy (2012)."On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant".Michigan Mathematical Journal.61(2): 239–254.doi:10.1307/mmj/1339011525.ISSN0026-2285.
  13. ^abRam Murty, M.; Saradha, N. (2010)."Euler–Lehmer constants and a conjecture of Erdos".Journal of Number Theory.130(12): 2671–2681.doi:10.1016/j.jnt.2010.07.004.ISSN0022-314X.
  14. ^Murty, M. Ram; Zaytseva, Anastasia (2013)."Transcendence of Generalized Euler Constants".The American Mathematical Monthly.120(1): 48–54.doi:10.4169/amer.math.monthly.120.01.048.ISSN0002-9890.JSTOR10.4169/amer.math.monthly.120.01.048.S2CID20495981.
  15. ^abcdKrämer, Stefan (2005).Die Eulersche Konstanteγund verwandte Zahlen(in German). University of Göttingen.
  16. ^Wolf, Marek (2019). "6+infinity new expressions for the Euler-Mascheroni constant".arXiv:1904.09855[math.NT].The above sum is real and convergent when zerosand complex conjugateare paired together and summed according to increasing absolute values of the imaginary parts of.See formula 11 on page 3. Note the typographical error in the numerator of Wolf's sum over zeros, which should be 2 rather than 1.
  17. ^Sondow, Jonathan (1998)."An antisymmetric formula for Euler's constant".Mathematics Magazine.71(3): 219–220.doi:10.1080/0025570X.1998.11996638.Archived fromthe originalon 2011-06-04.Retrieved2006-05-29.
  18. ^abBoya, L.J. (2008)."Another relation between π, e, γ and ζ(n)".Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.102(2): 199–202.doi:10.1007/BF03191819.γ/2 in (10) reflects the residual (finite part) of ζ(1)/2, of course.See formulas 1 and 10.
  19. ^Sondow, Jonathan (2005)."Double Integrals for Euler's Constant andand an Analog of Hadjicostas's Formula ".The American Mathematical Monthly.112(1): 61–65.doi:10.2307/30037385.JSTOR30037385.Retrieved2024-04-27.
  20. ^Chen, Chao-Ping (2018)."Ramanujan's formula for the harmonic number".Applied Mathematics and Computation.317:121–128.doi:10.1016/j.amc.2017.08.053.ISSN0096-3003.Retrieved2024-04-27.
  21. ^Lodge, A. (1904)."An approximate expression for the value of 1 + 1/2 + 1/3 +... + 1/r".Messenger of Mathematics.30:103–107.
  22. ^Villarino, Mark B. (2007). "Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number".arXiv:0707.3950[math.CA].It would also be interesting to develop an expansion for n! into powers of m, a newStirlingexpansion, as it were.See formula 1.8 on page 3.
  23. ^Mortici, Cristinel (2010)."On the Stirling expansion into negative powers of a triangular number".Math. Commun.15:359–364.
  24. ^Cesàro, E. (1885)."Sur la série harmonique".Nouvelles annales de mathématiques: Journal des candidats aux écoles polytechnique et normale(in French).4.Carilian-Goeury et Vor Dalmont: 295–296.
  25. ^Bromwich, Thomas John I'Anson (2005) [1908].An Introduction to the Theory of Infinite Series(PDF)(3rd ed.). United Kingdom: American Mathematical Society. p. 460.See exercise 18.
  26. ^Whittaker, E.; Watson, G. (2021) [1902].A Course of Modern Analysis(5th ed.). p. 271, 275.doi:10.1017/9781009004091.ISBN9781316518939.See Examples 12.21 and 12.50 for exercises on the derivation of the integral formof the series.
  27. ^Lagarias 2013,p. 13.
  28. ^Nelsen, R. B. (1991). "Proof without Words: Sum of Reciprocals of Triangular Numbers".Mathematics Magazine.64(3): 167.doi:10.1080/0025570X.1991.11977600.
  29. ^Edwards, H. M. (1974).Riemann's Zeta Function.Pure and Applied Mathematics, Vol. 58. Academic Press. pp. 67, 159.
  30. ^abSondow, Jonathan (2005). "Double integrals for Euler's constant andand an analog of Hadjicostas's formula ".American Mathematical Monthly.112(1): 61–65.arXiv:math.CA/0211148.doi:10.2307/30037385.JSTOR30037385.
  31. ^Sondow, Jonathan (1 August 2005a).New Vacca-type rational series for Euler's constant and its 'alternating' analog.arXiv:math.NT/0508042.
  32. ^Sondow, Jonathan; Zudilin, Wadim (2006). "Euler's constant,q-logarithms, and formulas of Ramanujan and Gosper ".The Ramanujan Journal.12(2): 225–244.arXiv:math.NT/0304021.doi:10.1007/s11139-006-0075-1.S2CID1368088.
  33. ^DeTemple, Duane W. (May 1993). "A Quicker Convergence to Euler's Constant".The American Mathematical Monthly.100(5): 468–470.doi:10.2307/2324300.ISSN0002-9890.JSTOR2324300.
  34. ^Havil 2003,pp. 75–8.
  35. ^Blagouchine 2016.
  36. ^Vacca, G.(1910)."A new analytical expression for the number π and some historical considerations".Bulletin of the American Mathematical Society.16:368–369.doi:10.1090/S0002-9904-1910-01919-4.
  37. ^Glaisher, James Whitbread Lee(1910). "On Dr. Vacca's series forγ".Q. J. Pure Appl. Math.41:365–368.
  38. ^Hardy, G.H. (1912). "Note on Dr. Vacca's series forγ".Q. J. Pure Appl. Math.43:215–216.
  39. ^Vacca, G.(1926). "Nuova serie per la costante di Eulero,C= 0,577... ". Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche".Matematiche e Naturali(in Italian).6(3): 19–20.
  40. ^Kluyver, J.C. (1927). "On certain series of Mr. Hardy".Q. J. Pure Appl. Math.50:185–192.
  41. ^abcBlagouchine, Iaroslav V. (2016). "Expansions of generalized Euler's constants into the series of polynomials inπ−2and into the formal enveloping series with rational coefficients only ".J. Number Theory.158:365–396.arXiv:1501.00740.doi:10.1016/j.jnt.2015.06.012.
  42. ^Pilehrood, Khodabakhsh Hessami; Pilehrood, Tatiana Hessami (2008-08-04),Vacca-type series for values of the generalized-Euler-constant function and its derivative,doi:10.48550/arXiv.0808.0410,retrieved2024-10-08
  43. ^Blagouchine, Iaroslav V. (2014)."Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results".The Ramanujan Journal.35(1): 21–110.doi:10.1007/s11139-013-9528-5.S2CID120943474.
  44. ^Berndt, Bruce C.(January 2008)."A fragment on Euler's constant in Ramanujan's lost notebook".South East Asian J. Math. & Math. Sc.6(2): 17–22.
  45. ^abcBlagouchine, Iaroslav V. (2018)."Three notes on Ser's and Hasse's representations for the zeta-functions".INTEGERS: The Electronic Journal of Combinatorial Number Theory.18A(#A3): 1–45.arXiv:1606.02044.Bibcode:2016arXiv160602044B.
  46. ^abAlabdulmohsin, Ibrahim M. (2018).Summability Calculus. A Comprehensive Theory of Fractional Finite Sums.Springer.pp. 147–8.ISBN9783319746487.
  47. ^Sloane, N. J. A.(ed.)."Sequence A302120 (Absolute value of the numerators of a series converging to Euler's constant)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.
  48. ^Sloane, N. J. A.(ed.)."Sequence A302121 (Denominators of a series converging to Euler's constant)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.
  49. ^Sloane, N. J. A.(ed.)."Sequence A073004 (Decimal expansion of exp(gamma))".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.
  50. ^Ramaré, Olivier (2022).Excursions in Multiplicative Number Theory.Birkhäuser Advanced Texts: Basel Textbooks. Basel: Birkhäuser/Springer. p. 131.doi:10.1007/978-3-030-73169-4.ISBN978-3-030-73168-7.MR4400952.S2CID247271545.
  51. ^Weisstein, Eric W."Mertens Theorem".mathworld.wolfram.com.Retrieved2024-10-08.
  52. ^Sondow, Jonathan (2003). "An infinite product foreγvia hypergeometric formulas for Euler's constant,γ".arXiv:math.CA/0306008.
  53. ^Choi, Junesang; Srivastava, H.M. (1 September 2010). "Integral Representations for the Euler–Mascheroni Constantγ".Integral Transforms and Special Functions.21(9): 675–690.doi:10.1080/10652461003593294.ISSN1065-2469.S2CID123698377.
  54. ^Sloane, N. J. A.(ed.)."Sequence A002852 (Continued fraction for Euler's constant)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.
  55. ^abWeisstein, Eric W."Euler-Mascheroni Constant Continued Fraction".mathworld.wolfram.com.Retrieved2024-09-23.
  56. ^Havil 2003,pp. 117–18.
  57. ^abSondow, Jonathan; Hadjicostas, Petros (2007). "The generalized-Euler-constant function $\gamma(z)$ and a generalization of Somos's quadratic recurrence constant".Journal of Mathematical Analysis and Applications.332(1): 292–314.arXiv:math/0610499.doi:10.1016/j.jmaa.2006.09.081.
  58. ^Lampret, Vito (2010-05-01)."Approximation of Sondow's generalized-Euler-constant function on the interval [−1, 1]".ANNALI DELL'UNIVERSITA' DI FERRARA.56(1): 65–76.doi:10.1007/s11565-009-0089-x.ISSN1827-1510.
  59. ^Weisstein, Eric W."Wolfram Search".mathworld.wolfram.com.Retrieved2024-10-03.
  60. ^Melquiond, Guillaume; Nowak, W. Georg; Zimmermann, Paul."Numerical approximation of the Masser-Gramain constant to four decimal digits"(PDF).Retrieved2024-10-03.
  61. ^Knuth, Donald E.(July 1962)."Euler's Constant to 1271 Places".Mathematics of Computation.16(79).American Mathematical Society:275–281.doi:10.2307/2004048.JSTOR2004048.
  62. ^Yee, Alexander J. (7 March 2011)."Large Computations".www.numberworld.org.
  63. ^abcdefghYee, Alexander J."Records Set by y-cruncher".www.numberworld.org.Retrieved30 April2018.
    Yee, Alexander J."y-cruncher - A Multi-Threaded Pi-Program".www.numberworld.org.
  64. ^"Euler-Mascheroni Constant".Polymath Collector.15 February 2020.

Further reading

[edit]
[edit]