Jump to content

Filoviridae

From Wikipedia, the free encyclopedia
(Redirected fromFilovirus)
Filoviridae
Ebolavirusstructure and genome
Electron micrographofMarburg virus
Virus classificationEdit this classification
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Negarnaviricota
Class: Monjiviricetes
Order: Mononegavirales
Family: Filoviridae
Genera

Filoviridae(/ˌflˈvɪrɪd/[1]) is afamilyofsingle-stranded negative-sense RNA virusesin theorderMononegavirales.[2]Two members of the family that are commonly known areEbola virusandMarburg virus.Both viruses, and some of their lesser known relatives, cause severediseaseinhumansand nonhumanprimatesin the form ofviral hemorrhagic fevers.[3]

All filoviruses are classified by the US asselect agents,[4]by theWorld Health Organizationas Risk Group 4 Pathogens (requiringBiosafety Level 4-equivalent containment),[5]by theNational Institutes of Health/National Institute of Allergy and Infectious Diseasesas Category A Priority Pathogens,[6]and by theCenters for Disease Control and PreventionasCategory A Bioterrorism Agents,[7]and are listed as Biological Agents for Export Control by theAustralia Group.[8]

Use of term

[edit]

ThefamilyFiloviridaeis avirological taxonthat was defined in 1982[3]and emended in 1991,[9]1998,[10]2000,[11]2005,[12]2010[13]and 2011.[14]The family currently includes the sixvirusgeneraCuevavirus,Dianlovirus,Ebolavirus,Marburgvirus,Striavirus,andThamnovirusand is included in theorderMononegavirales.[13]The members of the family (i.e. the actual physical entities) are called filoviruses or filovirids.[13]The nameFiloviridaeis derived from theLatinnounfilum(alluding to the filamentous morphology of filovirions) and thetaxonomicsuffix-viridae(which denotes a virus family).[3]

Note

[edit]

According to the rules for taxon naming established by theInternational Committee on Taxonomy of Viruses (ICTV),the nameFiloviridaeis always to becapitalized,italicized,never abbreviated, and to be preceded by the word "family". The names of its members (filoviruses or filovirids) are to be written in lower case, are not italicized, and used withoutarticles.[13][14]

Life cycle

[edit]
Replication cycle of filoviruses and vectors
Replication cycle of filoviruses at and inside host cell

The filoviruslife cyclebegins with virion attachment to specific cell-surfacereceptors,followed byfusionof the virion envelope with cellular membranes and the concomitant release of the virusnucleocapsidinto thecytosol.The viralRNA-dependent RNA polymerase(RdRp, or RNA replicase) partially uncoats the nucleocapsid andtranscribesthegenesinto positive-strandedmRNAs,which are thentranslatedinto structural and nonstructuralproteins.Filovirus RdRps bind to a singlepromoterlocated at the 3' end of the genome. Transcription either terminates after a gene or continues to the next gene downstream. This means that genes close to the 3' end of the genome are transcribed in the greatest abundance, whereas those toward the 5' end are least likely to be transcribed. The gene order is therefore a simple but effective form of transcriptional regulation. The most abundant protein produced is thenucleoprotein,whoseconcentrationin the cell determines when the RdRp switches from gene transcription to genome replication. Replication results in full-length, positive-stranded antigenomes that are in turn transcribed into negative-stranded virus progeny genome copies. Newly synthesized structural proteins and genomes self-assemble and accumulate near the inside of thecell membrane.Virionsbudoff from the cell, gaining their envelopes from the cellular membrane they bud from. The mature progeny particles then infect other cells to repeat the cycle.[12]

Family inclusion criteria

[edit]
Schematic representation of the filovirus genome organization.

A virus that fulfills the criteria for being a member of the orderMononegaviralesis a member of the familyFiloviridaeif:[13][14]

Family organization

[edit]
FamilyFiloviridae:genera, species, and viruses
Genus name Species name Virus name (abbreviation)
Cuevavirus Lloviu cuevavirus Lloviu virus(LLOV)
Dianlovirus Mengla dianlovirus Měnglà virus(MLAV)
Ebolavirus Bombali ebolavirus Bombali virus(BOMV)
Bundibugyo ebolavirus Bundibugyo virus(BDBV; previously BEBOV)
Reston ebolavirus Reston virus(RESTV; previously REBOV)
Sudan ebolavirus Sudan virus(SUDV; previously SEBOV)
Taï Forest ebolavirus Taï Forest virus(TAFV; previously CIEBOV)
Zaire ebolavirus Ebola virus(EBOV; previously ZEBOV)
Marburgvirus Marburg marburgvirus Marburg virus(MARV)
Ravn virus(RAVV)
Striavirus Xilang striavirus Xīlǎng virus(XILV)
Thamnovirus Huangjiao thamnovirus Huángjiāo virus(HUJV)

Phylogenetics

[edit]

The mutation rates in these genomes have been estimated to be between 0.46 × 10−4and 8.21 × 10−4nucleotide substitutions/site/year.[15]The most recent common ancestor of sequenced filovirus variants was estimated to be 1971 (1960–1976) for Ebola virus, 1970 (1948–1987) for Reston virus, and 1969 (1956–1976) for Sudan virus, with the most recent common ancestor among the four species included in the analysis (Ebola virus, Tai Forest virus, Sudan virus, and Reston virus) estimated at 1000–2100 years.[16]The most recent common ancestor of the Marburg and Sudan species appears to have evolved 700 and 850 years before present respectively. Although mutational clocks placed the divergence time of extant filoviruses at ~10,000 years before the present, dating of orthologous endogenous elements (paleoviruses) in the genomes of hamsters and voles indicated that the extant genera of filovirids had a common ancestor at least as old as the Miocene (~16–23 million or so years ago).[17]

Filoviridae cladogram is the following:[18][19]

Filoviridae

Tapjovirus bothropis= Tapajós virus (TAPV)

Striavirus antennarii= Xīlǎng virus (XILV)

Thamnovirus

Thamnovirus percae= Fiwi virus (FIWIV)

Thamnovirus kanderense= Kander virus (KNDV)

Thamnovirus thamnaconi= Huángjiāo virus (HUJV)

Oblavirus percae= Oberland virus (OBLV)

Paleovirology

[edit]

Paleoviral elements are known from each of the four main divergent clades of filoviruses. While orthologous elements in mammal genomes support a minimum age for filoviruses of tens of million of years, the existence of filoviruses and their elements in divergent lineages of fishes suggests that the virus family is hundreds of millions of years old.[20]Paleoviruses that appear to be derived from filovirus-like viruses have been identified in the genomes of many small-bodied species includingbats,rodents,shrews,tenrecs,tarsiers,marsupials[21][22][23]and fishes.[24]Although most filovirus-like elements appear to bepseudogenes,evolutionary and structural analyses suggest thatorthologsisolated from several species of the bat genusMyotisand the rodent family Spalacidae have been maintained by selection.[25][26]

Vaccines

[edit]

There are presently very limited vaccines for known filovirus.[27]An effective vaccine against EBOV, developed in Canada,[28]was approved for use in 2019 in the US and Europe.[29][30]Similarly, efforts to develop a vaccine against Marburg virus are under way.[31]

Mutation concerns and pandemic potential

[edit]

There has been a pressing concern that a very slight genetic mutation to a filovirus such asEBOVcould result in a change in transmission system from direct body fluid transmission to airborne transmission, as was seen in Reston virus (another member of genus Ebolavirus) between infected macaques. A similar change in the current circulating strains of EBOV could greatly increase the infection and disease rates caused by EBOV. However, there is no record of any Ebola strain ever having made this transition in humans.[32]

TheDepartment of Homeland Security’s National Biodefense Analysis and Countermeasures Center considers the risk of a mutatedEbola virusstrain with aerosol transmission capability emerging in the future as a serious threat to national security and has collaborated with theCenters for Disease Control and Prevention (CDC)to design methods to detect EBOV aerosols.[33]

References

[edit]
  1. ^"Filoviridae".Merriam-Webster.com Dictionary.Merriam-Webster.RetrievedJuly 28,2018.
  2. ^Kuhn, JH; Amarasinghe, GK; Basler, CF; Bavari, S; Bukreyev, A; Chandran, K; Crozier, I; Dolnik, O; Dye, JM; Formenty, PBH; Griffiths, A; Hewson, R;Kobinger, GP;Leroy, EM; Mühlberger, E; Netesov, SV; Palacios, G; Pályi, B; Pawęska, JT; Smither, SJ; Takada, A; Towner, JS; Wahl, V; ICTV Report, Consortium (June 2019)."ICTV Virus Taxonomy Profile: Filoviridae".The Journal of General Virology.100(6): 911–912.doi:10.1099/jgv.0.001252.PMC7011696.PMID31021739.
  3. ^abcKiley MP, Bowen ET, Eddy GA, Isaäcson M, Johnson KM, McCormick JB, Murphy FA, Pattyn SR, Peters D, Prozesky OW, Regnery RL, Simpson DI, Slenczka W, Sureau P, van der Groen G, Webb PA, Wulff H (1982)."Filoviridae: A taxonomic home for Marburg and Ebola viruses?".Intervirology.18(1–2): 24–32.doi:10.1159/000149300.PMID7118520.
  4. ^US Animal and Plant Health Inspection Service (APHIS) and US Centers for Disease Control and Prevention (CDC)."National Select Agent Registry (NSAR)".Retrieved2011-10-16.
  5. ^US Department of Health and Human Services."Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th Edition".Retrieved2011-10-16.
  6. ^US National Institutes of Health (NIH), US National Institute of Allergy and Infectious Diseases (NIAID)."Biodefense — NIAID Category A, B, and C Priority Pathogens".Archived fromthe originalon 2011-10-22.Retrieved2011-10-16.
  7. ^US Centers for Disease Control and Prevention (CDC)."Bioterrorism Agents/Diseases".Archived fromthe originalon July 22, 2014.Retrieved2011-10-16.
  8. ^The Australia Group."List of Biological Agents for Export Control".Archived fromthe originalon 2011-08-06.Retrieved2011-10-16.
  9. ^McCormick, J. B. (1991). "Family Filoviridae". In Francki, R. I. B.; Fauquet, C. M.; Knudson, D. L.; et al. (eds.).Classification and Nomenclature of Viruses-Fifth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplement.Vol. 2. Vienna, Austria: Springer. pp. 247–49.ISBN0-387-82286-0.
  10. ^Jahrling, P. B.; Kiley, M. P.; Klenk, H.-D.; Peters, C. J.; Sanchez, A.; Swanepoel, R. (1995). "Family Filoviridae". In Murphy, F. A.; Fauquet, C. M.; Bishop, D. H. L.; Ghabrial, S. A.; Jarvis, A. W.; Martelli, G. P.; Mayo, M. A.; Summers, M. D. (eds.).Virus Taxonomy—Sixth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplement.Vol. 10. Vienna, Austria: Springer. pp. 289–92.ISBN3-211-82594-0.
  11. ^Netesov, S.V.; Feldmann, H.; Jahrling, P. B.; Klenk, H. D.; Sanchez, A. (2000). "Family Filoviridae". In van Regenmortel, M. H. V.; Fauquet, C. M.; Bishop, D. H. L.; Carstens, E. B.; Estes, M. K.; Lemon, S. M.; Maniloff, J.; Mayo, M. A.; McGeoch, D. J.; Pringle, C. R.; Wickner, R. B. (eds.).Virus Taxonomy—Seventh Report of the International Committee on Taxonomy of Viruses.San Diego, USA: Academic Press. pp. 539–48.ISBN0-12-370200-3.
  12. ^abFeldmann, H.; Geisbert, T. W.; Jahrling, P. B.; Klenk, H.-D.; Netesov, S. V.; Peters, C. J.; Sanchez, A.; Swanepoel, R.; Volchkov, V. E. (2005). "Family Filoviridae". In Fauquet, C. M.; Mayo, M. A.; Maniloff, J.; Desselberger, U.; Ball, L. A. (eds.).Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses.San Diego, USA: Elsevier/Academic Press. pp. 645–653.ISBN0-12-370200-3.
  13. ^abcdeKuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, Netesov SV, Nichol ST, Palacios G, Peters CJ, Tenorio A, Volchkov VE, Jahrling PB (2010)."Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations".Archives of Virology.155(12): 2083–2103.doi:10.1007/s00705-010-0814-x.PMC3074192.PMID21046175.
  14. ^abcKuhn, J. H.; Becker, S.; Ebihara, H.; Geisbert, T. W.; Jahrling, P. B.; Kawaoka, Y.; Netesov, S. V.; Nichol, S. T.; Peters, C. J.; Volchkov, V. E.; Ksiazek, T. G. (2011). "Family Filoviridae". In King, Andrew M. Q.; Adams, Michael J.; Carstens, Eric B.; et al. (eds.).Virus Taxonomy—Ninth Report of the International Committee on Taxonomy of Viruses.London, UK: Elsevier/Academic Press. pp.665–671.ISBN978-0-12-384684-6.
  15. ^Carroll SA, Towner JS, Sealy TK, McMullan LK, Khristova ML, Burt FJ, Swanepoel R, Rollin PE, Nichol ST (March 2013)."Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences".J. Virol.87(5): 2608–16.doi:10.1128/JVI.03118-12.PMC3571414.PMID23255795.
  16. ^Li YH, Chen SP (2014)."Evolutionary history of Ebola virus"(PDF).Epidemiol. Infect.142(6): 1138–1145.doi:10.1017/S0950268813002215.PMC9151191.PMID24040779.S2CID9873900.
  17. ^Taylor, D. J.; Ballinger, M. J.; Zhan, J. J.; Hanzly, L. E.; Bruenn, J. A. (2014)."Evidence that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the Miocene".PeerJ.2:e556.doi:10.7717/peerj.556.PMC4157239.PMID25237605.
  18. ^Melanie M. Hierweger, Michel C. Koch, Melanie Rupp, Piet Maes, Nicholas Di Paola, Rémy Bruggmann, Jens H. Kuhn, Heike Schmidt-Posthaus & Torsten Seuberlich (2021-11-22)."Novel Filoviruses, Hantavirus, and Rhabdovirus in Freshwater Fish, Switzerland, 2017".Emerging Infectious Diseases.27(12): 3082–3091.doi:10.3201/eid2712.210491.PMC8632185.PMID34808081.{{cite journal}}:CS1 maint: multiple names: authors list (link)
  19. ^Biao He, Tingsong Hu, Xiaomin Yan, Fuqiang Zhang, Changchun Tu (2023-08-07)."Detection and characterization of a novel bat filovirus (Dehong virus, DEHV) in fruit bats".bioRxiv.doi:10.1101/2023.08.07.552227.{{cite journal}}:CS1 maint: multiple names: authors list (link)
  20. ^Taylor, Derek J.; Barnhart, Max H. (2024)."Genomic transfers help to decipher the ancient evolution of filoviruses and interactions with vertebrate hosts".PLOS Pathogens.20(9): e1011864.doi:10.1371/journal.ppat.1011864.PMID39226335.
  21. ^Taylor DJ, Leach RW, Bruenn J (2010)."Filoviruses are ancient and integrated into mammalian genomes".BMC Evolutionary Biology.10(1): 193.Bibcode:2010BMCEE..10..193T.doi:10.1186/1471-2148-10-193.PMC2906475.PMID20569424.
  22. ^Belyi VA, Levine AJ, Skalka AM (2010). Buchmeier (ed.)."Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes".PLOS Pathogens.6(7): e1001030.doi:10.1371/journal.ppat.1001030.PMC2912400.PMID20686665.
  23. ^Katzourakis A, Gifford RJ (2010)."Endogenous Viral Elements in Animal Genomes".PLOS Genetics.6(11): e1001191.doi:10.1371/journal.pgen.1001191.PMC2987831.PMID21124940.
  24. ^Taylor, Derek J.; Barnhart, Max H. (2024)."Genomic transfers help to decipher the ancient evolution of filoviruses and interactions with vertebrate hosts".PLOS Pathogens.20(9): e1011864.doi:10.1371/journal.ppat.1011864.PMID39226335.
  25. ^Taylor DJ, Dittmar K, Ballinger MJ, Bruenn JA (2011)."Evolutionary maintenance of filovirus-like genes in bat genomes".BMC Evolutionary Biology.11(336): 336.Bibcode:2011BMCEE..11..336T.doi:10.1186/1471-2148-11-336.PMC3229293.PMID22093762.
  26. ^Taylor, Derek J.; Barnhart, Max H. (2024)."Genomic transfers help to decipher the ancient evolution of filoviruses and interactions with vertebrate hosts".PLOS Pathogens.20(9): e1011864.doi:10.1371/journal.ppat.1011864.PMID39226335.
  27. ^Peters CJ, LeDuc JW (February 1999)."An Introduction to Ebola: The Virus and the Disease".The Journal of Infectious Diseases.179(Supplement 1): ix–xvi.doi:10.1086/514322.JSTOR30117592.PMID9988154.
  28. ^Plummer, Francis A.; Jones, Steven M. (2017-10-30)."The story of Canada's Ebola vaccine".CMAJ: Canadian Medical Association Journal.189(43): E1326–E1327.doi:10.1503/cmaj.170704.ISSN0820-3946.PMC5662448.PMID29084758.
  29. ^Research, Center for Biologics Evaluation and (2020-01-27)."ERVEBO".FDA.
  30. ^CZARSKA-THORLEY, Dagmara (2019-10-16)."Ervebo".European Medicines Agency.Retrieved2020-05-03.
  31. ^Keshwara, Rohan; Hagen, Katie R.; Abreu-Mota, Tiago; Papaneri, Amy B.; Liu, David; Wirblich, Christoph; Johnson, Reed F.; Schnell, Matthias J. (2019-03-05)."A Recombinant Rabies Virus Expressing the Marburg Virus Glycoprotein Is Dependent upon Antibody-Mediated Cellular Cytotoxicity for Protection against Marburg Virus Disease in a Murine Model".Journal of Virology.93(6).doi:10.1128/JVI.01865-18.ISSN0022-538X.PMC6401435.PMID30567978.
  32. ^Kelland, Kate (19 September 2014)."Scientists see risk of mutant airborne Ebola as remote".Reuters.Retrieved10 October2014.
  33. ^"Feature Article: New Tech Makes Detecting Airborne Ebola Virus Possible".Department of Homeland Security.20 April 2021.Retrieved13 December2021.

Further reading

[edit]
  • Klenk, Hans-Dieter (1999).Marburg and Ebola Viruses. Current Topics in Microbiology and Immunology.Vol. 235. Berlin, Germany: Springer-Verlag.ISBN978-3-540-64729-4.
  • Klenk, Hans-Dieter; Feldmann, Heinz (2004).Ebola and Marburg Viruses—Molecular and Cellular Biology.Wymondham, Norfolk, UK: Horizon Bioscience.ISBN978-0-9545232-3-7.
  • Kuhn, Jens H. (2008).Filoviruses—A Compendium of 40 Years of Epidemiological, Clinical, and Laboratory Studies. Archives of Virology Supplement.Vol. 20. Vienna, Austria: Springer.ISBN978-3-211-20670-6.
  • Ryabchikova, Elena I.; Price, Barbara B. (2004).Ebola and Marburg Viruses—A View of Infection Using Electron Microscopy.Columbus, Ohio, USA: Battelle Press.ISBN978-1-57477-131-2.
[edit]