Jump to content

HAT-P-41

Coordinates:Sky map19h49m17.4400s,+04° 40′ 20.7836″
From Wikipedia, the free encyclopedia
HAT-P-41
Observation data
EpochJ2000EquinoxJ2000
Constellation Aquila
Right ascension 19h49m17.4400s[1]
Declination 04° 40′ 20.7836″[1]
Apparent magnitude(V) 11.36
Characteristics
HAT-P-41
Evolutionary stage main-sequence star
Spectral type F9V[2]
HAT-P-41B
Spectral type K9-M0[2]
Astrometry
Radial velocity(Rv)33.2±0.5[3]km/s
Proper motion(μ)RA:−3.177[3]mas/yr
Dec.:−6.570[3]mas/yr
Parallax(π)2.8477 ± 0.0176mas[3]
Distance1,145 ± 7ly
(351 ± 2pc)
Position (relative to HAT-P-41)[2]
ComponentHAT-P-41B
Epoch of observation2013
Angular distance3.619±0.005
Position angle184.1±0.2°
Projected separation1270AU
Details[4]
Mass1.418±0.047M
Radius1.683+0.058
−0.036
R
Temperature6390±100K
Metallicity[Fe/H]0.21±0.10dex
Rotational velocity(vsini)19.60±0.50 km/s
Age2.2±0.4Gyr
Other designations
TYC488-2442-1,GSC00488-02442,2MASSJ19491743+0440207[1]
HAT-P-41:Gaia DR2 4290415081653653632, Gaia EDR3 4290415081653653632
HAT-P-41B:Gaia DR2 4290415081653653376, Gaia EDR3 4290415081653653376
Database references
SIMBADdata
Hat-P-41b

HAT-P-41is abinary starsystem. Its primary is aF-type main-sequence star.Its surface temperature is 6390±100K.[4]compared to theSun,HAT-P-41is enriched in heavy elements, with ametallicityFe/H index of 0.21±0.10, but is much younger at an age of 2.2±0.4 billion years.[4]

The candidate stellar companion was detected simultaneously with the planet discovery in 2012.[5]A multiplicity survey in 2015 did confirm a dim stellar companion of later-K to early-M spectral class, with the probability of being a background star of 14%.[2]By 2020, it was concluded the candidate companion star is probably gravitationally bound.[6]

Planetary system

[edit]

In 2012, one planet, namedHAT-P-41b,was discovered on a tight, circular orbit around the primary star.[5]

The planetary orbit is mildly misaligned with the equatorial plane of the star, misalignment angle equal to −22.1+0.8
−6.0
degrees.[7]

The transmission spectrum ofHAT-P-41btaken in 2020 has resulted in contradictory interpretations. One team has concluded the planetary atmosphere is metal-rich, with clear water signatures and absorption bands from sodium, aluminum, titanium and vanadium compounds.[8]Another team has interpreted the results as arising from a dense hydrogen atmosphere without detectable heavy elements, but with significant ionization.[9]The atmosphere also appears to contain significant cloud and hazes.[10]Neither heavy element compounds nor Hion opacity were found in 2022 study.[11]

The planetary equilibrium temperature is within 1700-1950K,[9]and the dayside temperature has been measured at 1622±125K.[12]

The HAT-P-41 planetary system[4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.795+0.056
−0.091
MJ
0.04258+0.00047
−0.00048
2.694047±0.000004 <0.22 87.7±1.0° 1.685+0.076
−0.051
RJ

References

[edit]
  1. ^abc"HAT-P-41".SIMBAD.Centre de données astronomiques de Strasbourg.Retrieved2021-01-21.
  2. ^abcdWöllert, Maria; Brandner, Wolfgang; Bergfors, Carolina; Henning, Thomas (2015), "A Lucky Imaging search for stellar companions to transiting planet host stars",Astronomy & Astrophysics,575:A23,arXiv:1507.01938,Bibcode:2015A&A...575A..23W,doi:10.1051/0004-6361/201424091,S2CID119250579
  3. ^abcdBrown, A. G. A.;et al. (Gaia collaboration) (2021)."GaiaEarly Data Release 3: Summary of the contents and survey properties ".Astronomy & Astrophysics.649:A1.arXiv:2012.01533.Bibcode:2021A&A...649A...1G.doi:10.1051/0004-6361/202039657.S2CID227254300.(Erratum:doi:10.1051/0004-6361/202039657e).Gaia EDR3 record for this sourceatVizieR.
  4. ^abcdBonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; et al. (2017), "The GAPS Programme with HARPS-N at TNG",Astronomy & Astrophysics,602:A107,arXiv:1704.00373,Bibcode:2017A&A...602A.107B,doi:10.1051/0004-6361/201629882,S2CID118923163
  5. ^abHartman, J. D.; et al. (2012), "HAT-P-39b–HAT-P-41b: Three Highly Inflated Transiting Hot Jupiters",The Astronomical Journal,144(5): 139,arXiv:1207.3344,Bibcode:2012AJ....144..139H,doi:10.1088/0004-6256/144/5/139,S2CID118457589
  6. ^Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars",Astronomy & Astrophysics,635:A73,arXiv:2001.08224,Bibcode:2020A&A...635A..73B,doi:10.1051/0004-6361/201937127,S2CID210861118
  7. ^Johnson, Marshall C.; Cochran, William D.; Addison, Brett C.; Tinney, Chris G.; Wright, Duncan J. (2017), "Spin–Orbit Misalignments of Three Jovian Planets via Doppler Tomography",The Astronomical Journal,154(4): 137,arXiv:1708.01291,Bibcode:2017AJ....154..137J,doi:10.3847/1538-3881/aa8462,S2CID119487498
  8. ^Sheppard, Kyle B.; et al. (2021)."The Hubble PanCET Program: A Metal-rich Atmosphere for the Inflated Hot Jupiter HAT-P-41b".The Astronomical Journal.161(2): 51.arXiv:2010.09659.Bibcode:2021AJ....161...51S.doi:10.3847/1538-3881/abc8f4.S2CID224710738.
  9. ^abLewis, N. K.; et al. (2020), "Into the UV: The Atmosphere of the Hot Jupiter HAT-P-41b Revealed",The Astrophysical Journal,902(1): L19,arXiv:2010.08551,Bibcode:2020ApJ...902L..19L,doi:10.3847/2041-8213/abb77f,S2CID224706001
  10. ^Wakeford, H. R.; Sing, D. K.; Stevenson, K. B.; Lewis, N. K.; Pirzkal, N.; Wilson, T. J.; Goyal, J.; Kataria, T.; Mikal-Evans, T.; Nikolov, N.; Spake, J. (2020), "Into the UV: A Precise Transmission Spectrum of HAT-P-41b Using Hubble's WFC3/UVIS G280 Grism",The Astronomical Journal,159(5): 204,arXiv:2003.00536,Bibcode:2020AJ....159..204W,doi:10.3847/1538-3881/ab7b78,S2CID211677682
  11. ^Fu, Guangwei; Sing, David K.; Deming, Drake; Sheppard, Kyle; Wakeford, H. R.; Mikal-Evans, Thomas; Alam, Munazza K.; Dos Santos, Leonardo A.; López-Morales, Mercedes; Lothringer, Joshua D. (2022), "The Hubble PanCET Program: Emission Spectrum of Hot Jupiter HAT-P-41b",The Astronomical Journal,163(4): 190,arXiv:2202.12314,Bibcode:2022AJ....163..190F,doi:10.3847/1538-3881/ac58fc,S2CID247154998
  12. ^Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather A.; Wallack, Nicole; Burrows, Adam; Fortney, Jonathan J.; Hood, Callie; Seay, Christopher; Sing, David K.; Benneke, Björn; Fraine, Jonathan D.; Kataria, Tiffany; Lewis, Nikole; Madhusudhan, Nikku; McCullough, Peter; Stevenson, Kevin B.; Wakeford, Hannah (2020), "Statistical Characterization of Hot Jupiter Atmospheres Using Spitzer's Secondary Eclipses",The Astronomical Journal,159(4): 137,arXiv:1901.07040,Bibcode:2020AJ....159..137G,doi:10.3847/1538-3881/ab6cff,S2CID119209434