Jump to content

Immunosenescence

From Wikipedia, the free encyclopedia

Immunosenescenceis the gradual deterioration of theimmune system,brought on bynatural age advancement.A 2020 review concluded that theadaptive immune systemis affected more than theinnate immune system.[1]Immunosenescence involves both the host's capacity to respond to infections and the development of long-term immune memory. Age-associatedimmune deficiencyis found in both long- and short-lived species as a function of their age relative to life expectancy rather than elapsed time.[2]

It has been studied in animal models including mice, marsupials and monkeys.[3][4][5]Immunosenescence is a contributory factor to the increased frequency of morbidity and mortality among the elderly. Along withanergyand T-cellexhaustion,immunosenescence belongs among the major immune system dysfunctional states. However, while T-cell anergy is a reversible condition, as of 2020 no techniques for immunosenescence reversal had been developed.[6][7]

Immunosenescence is not a random deteriorative phenomenon, rather it appears to inversely recapitulate an evolutionary pattern. Most of the parameters affected by immunosenescence appear to be under genetic control.[8]Immunosenescence can be envisaged as the result of the continuous challenge of the unavoidable exposure to a variety ofantigenssuch asvirusesandbacteria.[9]

Age-associated decline in immune function[edit]

Aging of the immune system is a controversial phenomenon. Senescence refers toreplicative senescencefromcell biology,which describes the condition when the upper limit of cell divisions (Hayflick limit) has been exceeded, and such cells commitapoptosisor lose their functional properties. Immunosenescence generally means a robust shift in both structural and functional parameters that has a clinically relevant outcome.[10]Thymusinvolution is probably the most relevant factor responsible for immunosenescence.Thymic involutionis common in most mammals; in humans it begins afterpuberty,as the immunological defense against most novel antigens is necessary mainly during infancy and childhood.[11]

The major characteristic of the immunosenescentphenotypeis a shift in T-cell subpopulation distribution. As the thymus involutes, the number of naive T cells (especiallyCD8+) decreases, thus naive T cells homeostatically proliferate intomemory T cellsas a compensation.[5]It is believed that the conversion to memory phenotype can be accelerated by restimulation of the immune system bypersistent pathogenssuch asCMVandHSV.By age 40, an estimated 50% to 85% of adults have contractedhuman cytomegalovirus(HCMV).[1]Recurring infections by latentherpes virusescan exhaust the immune system of elderly persons.[12]Consistent, repeated stimulation by such pathogens leads to preferential differentiation of the T-cell memory phenotype, and a 2020 review reported that CD8+ T-cell precursors, specific for the most rare and less frequently present antigens shed the most.[5]Such a distribution shift leads to increased susceptibility to non-persistent infection, cancer, autoimmune diseases, cardiovascular health conditions and many others.[13][14]

T cells are not the only immune cells affected by aging:

In addition to changes in immune responses, the beneficial effects ofinflammationdevoted to the neutralisation of dangerous and harmful agents early in life and in adulthood become detrimental late in life in a period largely not foreseen by evolution, according to the antagonisticpleiotropytheory of aging.[25]Changes in the lymphoid compartment are not solely responsible for the malfunctioning of theimmune system.Although myeloid cell production does not seem to decline with age,macrophagesbecome dysregulated as a consequence of environmental changes.[26]

T-cell biomarkers of age-dependent dysfunction[edit]

T cells' functional capacity is most influenced by aging effects. Age-related alterations are evident in all T-cell development stages, making them a significant factor in immunosenescence.[27]T-cell function decline begins with the progressiveinvolutionof thethymus,which is the organ essential for T-cell maturation. This decline in turn reducesIL-2production[28][29]and reduction/exhaustion on the number ofthymocytes(i.e. immature T cells), thus reducing peripheral naïve T cell output.[30][31]Once matured and circulating throughout the peripheral system, T cells undergo deleterious age-dependent changes. This leaves the body practically devoid of virgin T cells, which makes it more prone to a variety of diseases.[9]

Challenges[edit]

The elderly frequently present with non-specific signs and symptoms, and clues of focal infection are often absent or obscured by chronic conditions.[2]This complicates diagnosis and treatment.

Vaccination in the elderly[edit]

The reduced efficacy of vaccination in the elderly stems from their restricted ability to respond to immunization with novel non-persistent pathogens, and correlates with both CD4:CD8 alterations and impaired dendritic cell function.[48]Therefore, vaccination in earlier life stages seems more likely to be effective, although the duration of the effect varies by pathogen.[49][10]

Rescue of the advanced-age phenotype[edit]

Removal of senescent cells withsenolytic compoundshas been proposed as a method of enhancing immunity during aging.[50]

Immune system aging in mice can be partly restricted by restoring thymus growth, which can be achieved by transplantation of proliferative thymic epithelial cells from young mice.[51]Metforminhas been proven to moderate aging in preclinical studies.[52]Its protective effect is probably caused primarily by impaired mitochondria metabolism, particularly decreased reactive oxygen production[53]or increased AMP:ATP ratio[54]and lower NAD/NADH ratio. CoenzymeNAD+is reduced in various tissues in an age-dependent manner, and thusredoxpotential associated changes seem to be critical in the aging process,[55]and NAD+ supplements may have protective effects.[56]Rapamycin,an antitumor and immunosuppresant, acts similarly.[57]

References[edit]

  1. ^abPangrazzi L, Weinberger B (February 2020). "T cells, aging and senescence".Experimental Gerontology.134:110887.doi:10.1016/j.exger.2020.110887.PMID32092501.S2CID211237913.
  2. ^abGinaldi L, Loreto MF, Corsi MP, Modesti M, De Martinis M (August 2001). "Immunosenescence and infectious diseases".Microbes and Infection.3(10): 851–857.doi:10.1016/S1286-4579(01)01443-5.PMID11580980.
  3. ^Letendre C, Sawyer E, Young LJ, Old JM (2018)."Immunosenescence in a captive semelparous marsupial, the red-tailed phascogale (Phascogale calura)".BMC Zoology.3:10.doi:10.1186/s40850-018-0036-3.S2CID53496572.
  4. ^Letendre C, Young LJ, Old JM (October 2018)."Limitations in the isolation and stimulation of splenic mononuclear cells in a dasyurid marsupial, Phascogale calura".BMC Research Notes.11(1): 712.doi:10.1186/s13104-018-3824-5.PMC6180634.PMID30305168.
  5. ^abcNikolich-Zugich J, Rudd BD (August 2010)."Immune memory and aging: an infinite or finite resource?".Current Opinion in Immunology.22(4): 535–540.doi:10.1016/j.coi.2010.06.011.PMC2925022.PMID20674320.
  6. ^abCrespo J, Sun H, Welling TH, Tian Z, Zou W (April 2013)."T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment".Current Opinion in Immunology.25(2): 214–221.doi:10.1016/j.coi.2012.12.003.PMC3636159.PMID23298609.
  7. ^Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y (2020)."T Cell Dysfunction and Exhaustion in Cancer".Frontiers in Cell and Developmental Biology.8:17.doi:10.3389/fcell.2020.00017.PMC7027373.PMID32117960.
  8. ^abcFranceschi C, Valensin S, Fagnoni F, Barbi C, Bonafè M (December 1999). "Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load".Experimental Gerontology.34(8): 911–921.doi:10.1016/S0531-5565(99)00068-6.PMID10673145.S2CID32614875.
  9. ^abFranceschi C, Bonafè M, Valensin S (February 2000). "Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space".Vaccine.18(16): 1717–1720.doi:10.1016/S0264-410X(99)00513-7.PMID10689155.
  10. ^abcPawelec G (May 2018). "Age and immunity: What is" immunosenescence "?".Experimental Gerontology.105:4–9.doi:10.1016/j.exger.2017.10.024.PMID29111233.S2CID46819839.
  11. ^Shanley DP, Aw D, Manley NR, Palmer DB (July 2009)."An evolutionary perspective on the mechanisms of immunosenescence".Trends in Immunology.30(7): 374–381.doi:10.1016/j.it.2009.05.001.PMID19541538.
  12. ^Nikolich-Zugich J (2008)."Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections".Nature Reviews Immunology.8(7): 512–522.doi:10.1038/nri2318.PMC5573867.PMID18469829.
  13. ^Hakim FT, Gress RE (September 2007)."Immunosenescence: deficits in adaptive immunity in the elderly".Tissue Antigens.70(3): 179–189.doi:10.1111/j.1399-0039.2007.00891.x.PMID17661905.
  14. ^Haq K, McElhaney JE (August 2014). "Immunosenescence: Influenza vaccination and the elderly".Current Opinion in Immunology.29:38–42.doi:10.1016/j.coi.2014.03.008.PMID24769424.
  15. ^Monga I, Kaur K, Dhanda S (March 2022). "Revisiting hematopoiesis: applications of the bulk and single-cell transcriptomics dissecting transcriptional heterogeneity in hematopoietic stem cells".Briefings in Functional Genomics.21(3): 159–176.doi:10.1093/bfgp/elac002.PMID35265979.
  16. ^ High frequency electromagnetic waves such as gamma and xrays can penetrate and damage DNA.Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, et al. (October 2004). "Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells".Nature.431(7011): 997–1002.Bibcode:2004Natur.431..997I.doi:10.1038/nature02989.PMID15496926.S2CID4370804.
  17. ^Lord JM, Butcher S, Killampali V, Lascelles D, Salmon M (September 2001). "Neutrophil ageing and immunesenescence".Mechanisms of Ageing and Development.122(14): 1521–1535.doi:10.1016/S0047-6374(01)00285-8.PMID11511394.S2CID1898942.
  18. ^Stout RD, Suttles J (June 2005)."Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes".Immunological Reviews.205:60–71.doi:10.1111/j.0105-2896.2005.00260.x.PMC1201508.PMID15882345.
  19. ^Bruunsgaard H, Pedersen AN, Schroll M, Skinhøj P, Pedersen BK (December 2001). "Decreased natural killer cell activity is associated with atherosclerosis in elderly humans".Experimental Gerontology.37(1): 127–136.doi:10.1016/S0531-5565(01)00162-0.PMID11738153.S2CID32717204.
  20. ^abMocchegiani E, Malavolta M (August 2004)."NK and NKT cell functions in immunosenescence".Aging Cell.3(4): 177–184.doi:10.1111/j.1474-9728.2004.00107.x.PMID15268751.S2CID19710282.
  21. ^Uyemura K, Castle SC, Makinodan T (April 2002). "The frail elderly: role of dendritic cells in the susceptibility of infection".Mechanisms of Ageing and Development.123(8): 955–962.doi:10.1016/S0047-6374(02)00033-7.PMID12044944.S2CID11558962.
  22. ^Sanchez-Correa B, Campos C, Pera A, Bergua JM, Arcos MJ, Bañas H, et al. (April 2016)."Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies?".Cancer Immunology, Immunotherapy.65(4): 453–463.doi:10.1007/s00262-015-1720-6.PMC11029066.PMID26059279.S2CID20498123.
  23. ^Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, et al. (February 2009)."B-cell diversity decreases in old age and is correlated with poor health status".Aging Cell.8(1): 18–25.doi:10.1111/j.1474-9726.2008.00443.x.PMC2667647.PMID18986373.
  24. ^Han S, Yang K, Ozen Z, Peng W, Marinova E, Kelsoe G, Zheng B (February 2003)."Enhanced differentiation of splenic plasma cells but diminished long-lived high-affinity bone marrow plasma cells in aged mice".Journal of Immunology.170(3): 1267–1273.doi:10.4049/jimmunol.170.3.1267.PMID12538685.
  25. ^Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (June 2000). "Inflamm-aging. An evolutionary perspective on immunosenescence".Annals of the New York Academy of Sciences.908(1): 244–254.Bibcode:2000NYASA.908..244F.doi:10.1111/j.1749-6632.2000.tb06651.x.PMID10911963.S2CID1843716.
  26. ^Cambier J (June 2005). "Immunosenescence: a problem of lymphopoiesis, homeostasis, microenvironment, and signaling".Immunological Reviews.205:5–6.doi:10.1111/j.0105-2896.2005.00276.x.PMID15882340.S2CID39130596.
  27. ^Linton PJ, Lustgarten J, Thoman M (2006). "T cell function in the aged: Lessons learned from animal models".Clinical and Applied Immunology Reviews.6(2): 73–97.doi:10.1016/j.cair.2006.06.001.
  28. ^Effros RB (April 2004). "Replicative senescence of CD8 T cells: effect on human ageing".Experimental Gerontology.39(4): 517–524.doi:10.1016/j.exger.2003.09.024.PMID15050285.S2CID2954461.
  29. ^Malek TR, Bayer AL (September 2004). "Tolerance, not immunity, crucially depends on IL-2".Nature Reviews. Immunology.4(9): 665–674.doi:10.1038/nri1435.PMID15343366.S2CID8449323.
  30. ^Aspinall R, Andrew D (July 2000). "Thymic involution in aging".Journal of Clinical Immunology.20(4): 250–256.doi:10.1023/A:1006611518223.PMID10939712.S2CID25042349.
  31. ^Min H, Montecino-Rodriguez E, Dorshkind K (July 2004)."Reduction in the developmental potential of intrathymic T cell progenitors with age".Journal of Immunology.173(1): 245–250.doi:10.4049/jimmunol.173.1.245.PMID15210781.
  32. ^Hadrup SR, Strindhall J, Køllgaard T, Seremet T, Johansson B, Pawelec G, et al. (February 2006)."Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly".Journal of Immunology.176(4): 2645–2653.doi:10.4049/jimmunol.176.4.2645.PMID16456027.
  33. ^abcdVoehringer D, Koschella M, Pircher H (November 2002)."Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1)".Blood.100(10): 3698–3702.doi:10.1182/blood-2002-02-0657.PMID12393723.
  34. ^Lefebvre JS, Maue AC, Eaton SM, Lanthier PA, Tighe M, Haynes L (October 2012)."The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice".Aging Cell.11(5): 732–740.doi:10.1111/j.1474-9726.2012.00836.x.PMC3444657.PMID22607653.
  35. ^Fülöp T, Gagné D, Goulet AC, Desgeorges S, Lacombe G, Arcand M, Dupuis G (April 1999). "Age-related impairment of p56lck and ZAP-70 activities in human T lymphocytes activated through the TcR/CD3 complex".Experimental Gerontology.34(2): 197–216.doi:10.1016/S0531-5565(98)00061-8.PMID10363787.S2CID42659829.
  36. ^abMurciano C, Villamón E, Yáñez A, O'Connor JE, Gozalbo D, Gil ML (December 2006)."Impaired immune response to Candida albicans in aged mice".Journal of Medical Microbiology.55(Pt 12): 1649–1656.doi:10.1099/jmm.0.46740-0.PMID17108267.
  37. ^abOuyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, et al. (August 2003). "Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1)".Experimental Gerontology.38(8): 911–920.doi:10.1016/S0531-5565(03)00134-7.PMID12915213.S2CID44591282.
  38. ^abNaylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, et al. (June 2005)."The influence of age on T cell generation and TCR diversity".Journal of Immunology.174(11): 7446–7452.doi:10.4049/jimmunol.174.11.7446.PMID15905594.
  39. ^abWeng NP (May 2006)."Aging of the immune system: how much can the adaptive immune system adapt?".Immunity.24(5): 495–499.doi:10.1016/j.immuni.2006.05.001.PMC2266981.PMID16713964.
  40. ^Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M (June 2019)."The Evolving Role of CD8+CD28Immunosenescent T Cells in Cancer Immunology ".International Journal of Molecular Sciences.20(11): 2810.doi:10.3390/ijms20112810.PMC6600236.PMID31181772.
  41. ^Manser AR, Uhrberg M (April 2016)."Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance".Cancer Immunology, Immunotherapy.65(4): 417–426.doi:10.1007/s00262-015-1750-0.PMC11028690.PMID26288343.S2CID32642259.
  42. ^Yang OO, Lin H, Dagarag M, Ng HL, Effros RB, Uittenbogaart CH (February 2005)."Decreased perforin and granzyme B expression in senescent HIV-1-specific cytotoxic T lymphocytes".Virology.332(1): 16–19.doi:10.1016/j.virol.2004.11.028.PMID15661136.
  43. ^Sunderkötter C, Kalden H, Luger TA (October 1997). "Aging and the skin immune system".Archives of Dermatology.133(10): 1256–1262.doi:10.1001/archderm.133.10.1256.PMID9382564.
  44. ^Shimatani K, Nakashima Y, Hattori M, Hamazaki Y, Minato N (September 2009)."PD-1+ memory phenotype CD4+ T cells expressing C/EBPalpha underlie T cell immunodepression in senescence and leukemia".Proceedings of the National Academy of Sciences of the United States of America.106(37): 15807–15812.Bibcode:2009PNAS..10615807S.doi:10.1073/pnas.0908805106.PMC2739871.PMID19805226.
  45. ^Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, et al. (September 2014)."p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8⁺ T cells".The Journal of Clinical Investigation.124(9): 4004–4016.doi:10.1172/JCI75051.PMC4151208.PMID25083993.
  46. ^Tahir S, Fukushima Y, Sakamoto K, Sato K, Fujita H, Inoue J, et al. (June 2015). "A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production".Journal of Immunology.194(12): 5725–5735.doi:10.4049/jimmunol.1500319.hdl:2433/202671.PMID25972477.S2CID12736294.
  47. ^Wang YH, Yu XH, Luo SS, Han H (2015-10-08)."Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing".Immunity & Ageing.12(1): 17.doi:10.1186/s12979-015-0042-z.PMC4597608.PMID26451160.
  48. ^Schulz AR, Mälzer JN, Domingo C, Jürchott K, Grützkau A, Babel N, et al. (November 2015)."Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans".Journal of Immunology.195(10): 4699–4711.doi:10.4049/jimmunol.1500598.PMID26459351.S2CID24146051.
  49. ^Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, et al. (April 2015)."Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination".Science Translational Medicine.7(282): 282ra48.doi:10.1126/scitranslmed.aaa3700.PMID25855494.S2CID21394251.
  50. ^Chambers ES, Akbar AN (2020). "Can blocking inflammation enhance immunity during aging?".The Journal of Allergy and Clinical Immunology.145(5): 1323–1331.doi:10.1016/j.jaci.2020.03.016.PMID32386656.
  51. ^Kim MJ, Miller CM, Shadrach JL, Wagers AJ, Serwold T (May 2015)."Young, proliferative thymic epithelial cells engraft and function in aging thymuses".Journal of Immunology.194(10): 4784–4795.doi:10.4049/jimmunol.1403158.PMC4481326.PMID25870244.
  52. ^Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA (June 2016)."Metformin as a Tool to Target Aging".Cell Metabolism.23(6): 1060–1065.doi:10.1016/j.cmet.2016.05.011.PMC5943638.PMID27304507.
  53. ^Kane DA, Anderson EJ, Price JW, Woodlief TL, Lin CT, Bikman BT, et al. (September 2010)."Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats".Free Radical Biology & Medicine.49(6): 1082–1087.doi:10.1016/j.freeradbiomed.2010.06.022.PMC2921476.PMID20600832.
  54. ^El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X (January 2000)."Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I".The Journal of Biological Chemistry.275(1): 223–228.doi:10.1074/jbc.275.1.223.PMID10617608.
  55. ^Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang XM, Zhang D, et al. (September 2018)."Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo".Nature Medicine.24(9): 1384–1394.doi:10.1038/s41591-018-0125-4.PMC6129196.PMID30038219.
  56. ^Rajman L, Chwalek K, Sinclair DA (March 2018)."Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence".Cell Metabolism.27(3): 529–547.doi:10.1016/j.cmet.2018.02.011.PMC6342515.PMID29514064.
  57. ^Popovich IG, Anisimov VN, Zabezhinski MA, Semenchenko AV, Tyndyk ML, Yurova MN, Blagosklonny MV (May 2014)."Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin".Cancer Biology & Therapy.15(5): 586–592.doi:10.4161/cbt.28164.PMC4026081.PMID24556924.