Poisson point process
Probability density function | |||
Mean | |||
---|---|---|---|
Variance |
|
Inprobability theory,statisticsand related fields, aPoisson point process(also known as:Poisson random measure,Poisson random point fieldandPoisson point field) is a type ofmathematical objectthat consists ofpointsrandomly located on amathematical spacewith the essential feature that the points occur independently of one another.[1]The process's name derives from the fact that the number of points in any given finite region follows aPoisson distribution.The process and the distribution are named after French mathematicianSiméon Denis Poisson.The process itself was discovered independently and repeatedly in several settings, including experiments onradioactive decay,telephone call arrivals andactuarial science.[2][3]
This point process is used as amathematical modelfor seemingly random processes in numerous disciplines includingastronomy,[4]biology,[5]ecology,[6]geology,[7]seismology,[8]physics,[9]economics,[10]image processing,[11][12]andtelecommunications.[13][14]
The Poisson point process is often defined on the real number line, where it can be considered astochastic process.It is used, for example, inqueueing theory[15]to model random events distributed in time, such as the arrival of customers at a store, phone calls at an exchange or occurrence of earthquakes. In theplane,the point process, also known as aspatial Poisson process,[16]can represent the locations of scattered objects such as transmitters in awireless network,[13][17][18][19]particlescolliding into a detector or trees in a forest.[20]The process is often used in mathematical models and in the related fields of spatial point processes,[21]stochastic geometry,[1]spatial statistics[21][22]andcontinuum percolation theory.[23]
The Poisson point process can be defined on moreabstractspaces. Beyond applications, the Poisson point process is an object of mathematical study in its own right.[24]The Poisson point process has the property that each point isstochastically independentto all the other points in the process, which is why it is sometimes called a purely or completely random process.[25]Modeling a system as a Poisson process is insufficient when the point-to-point interactions are too strong (that is, the points are not stochastically independent). Such a system may be better modeled with a different point process.[26]
The point process depends on a single mathematical object, which, depending on the context, may be aconstant,alocally integrable functionor, in more general settings, aRadon measure.[27]In the first case, the constant, known as therateorintensity,is the averagedensityof the points in the Poisson process located in some region of space. The resulting point process is called ahomogeneousorstationary Poisson point process.[28]In the second case, the point process is called aninhomogeneousornonhomogeneousPoisson point process,and the average density of points depend on the location of the underlying space of the Poisson point process.[29]The wordpointis often omitted,[24]but there are otherPoisson processesof objects, which, instead of points, consist of more complicated mathematical objects such aslinesandpolygons,and such processes can be based on the Poisson point process.[30]Both the homogeneous and nonhomogeneous Poisson point processes are particular cases of thegeneralized renewal process.
Overview of definitions
[edit]Depending on the setting, the process has several equivalent definitions[31]as well as definitions of varying generality owing to its many applications and characterizations.[32]The Poisson point process can be defined, studied and used in one dimension, for example, on the real line, where it can be interpreted as a counting process or part of a queueing model;[33][34]in higher dimensions such as the plane where it plays a role instochastic geometry[1]andspatial statistics;[35]or on more general mathematical spaces.[36]Consequently, the notation, terminology and level of mathematical rigour used to define and study the Poisson point process and points processes in general vary according to the context.[37]
Despite all this, the Poisson point process has two key properties—the Poisson property and the independence property— that play an essential role in all settings where the Poisson point process is used.[27][38]The two properties are not logically independent; indeed, the Poisson distribution of point counts implies the independence property,[a]while in the converse direction the assumptions that: (i) the point process is simple, (ii) has no fixed atoms, and (iii) is a.s. boundedly finite are required.[39]
Poisson distribution of point counts
[edit]A Poisson point process is characterized via thePoisson distribution.The Poisson distribution is the probability distribution of arandom variable(called aPoisson random variable) such that the probability thatequalsis given by:
wheredenotesfactorialand the parameterdetermines the shape of the distribution. (In fact,equals the expected value of.)
By definition, a Poisson point process has the property that the number of points in a bounded region of the process's underlying space is a Poisson-distributed random variable.[38]
Complete independence
[edit]Consider a collection ofdisjointand bounded subregions of the underlying space. By definition, the number of points of a Poisson point process in each bounded subregion will be completely independent of all the others.
This property is known under several names such ascomplete randomness,complete independence,[40]orindependent scattering[41][42]and is common to all Poisson point processes. In other words, there is a lack of interaction between different regions and the points in general,[43]which motivates the Poisson process being sometimes called apurelyorcompletelyrandom process.[40]
Homogeneous Poisson point process
[edit]If a Poisson point process has a parameter of the form,whereis Lebesgue measure (that is, it assigns length, area, or volume to sets) andis a constant, then the point process is called a homogeneous or stationary Poisson point process. The parameter, calledrateorintensity,is related to the expected (or average) number of Poisson points existing in some bounded region,[44][45]whererateis usually used when the underlying space has one dimension.[44]The parametercan be interpreted as the average number of points per some unit of extent such aslength,area,volume,or time, depending on the underlying mathematical space, and it is also called themean densityormean rate;[46]seeTerminology.
Interpreted as a counting process
[edit]The homogeneous Poisson point process, when considered on the positive half-line, can be defined as acounting process,a type of stochastic process, which can be denoted as.[31][34]A counting process represents the total number of occurrences or events that have happened up to and including time.A counting process is a homogeneous Poisson counting process with rateif it has the following three properties:[31][34]
- hasindependent increments;and
- the number of events (or points) in any interval of lengthis a Poisson random variable with parameter (or mean).
The last property implies:
In other words, the probability of the random variablebeing equal tois given by:
The Poisson counting process can also be defined by stating that the time differences between events of the counting process are exponential variables with mean.[47]The time differences between the events or arrivals are known asinterarrival[48]orinteroccurencetimes.[47]
Interpreted as a point process on the real line
[edit]Interpreted as apoint process,a Poisson point process can be defined on thereal lineby considering the number of points of the process in the interval.For the homogeneous Poisson point process on the real line with parameter,the probability of this random number of points, written here as,being equal to somecounting numberis given by:[49]
For some positive integer,the homogeneous Poisson point process has the finite-dimensional distribution given by:[49]
where the real numbers.
In other words,is a Poisson random variable with mean,where.Furthermore, the number of points in any two disjoint intervals, say,andare independent of each other, and this extends to any finite number of disjoint intervals.[49]In the queueing theory context, one can consider a point existing (in an interval) as anevent,but this is different to the wordeventin the probability theory sense.[b]It follows thatis the expected number ofarrivalsthat occur per unit of time.[34]
Key properties
[edit]The previous definition has two important features shared by Poisson point processes in general:[49][27]
- the number of arrivals in each finite interval has a Poisson distribution;
- the number of arrivals in disjoint intervals are independent random variables.
Furthermore, it has a third feature related to just the homogeneous Poisson point process:[50]
- the Poisson distribution of the number of arrivals in each intervalonly depends on the interval's length.
In other words, for any finite,the random variableis independent of,so it is also called a stationary Poisson process.[49]
Law of large numbers
[edit]The quantitycan be interpreted as the expected or average number of points occurring in the interval,namely:
wheredenotes theexpectationoperator. In other words, the parameterof the Poisson process coincides with thedensityof points. Furthermore, the homogeneous Poisson point process adheres to its own form of the (strong) law of large numbers.[51]More specifically, with probability one:
wheredenotes thelimitof a function, andis expected number of arrivals occurred per unit of time.
Memoryless property
[edit]The distance between two consecutive points of a point process on the real line will be anexponential random variablewith parameter(or equivalently, mean). This implies that the points have thememorylessproperty: the existence of one point existing in a finite interval does not affect the probability (distribution) of other points existing,[52][53]but this property has no natural equivalence when the Poisson process is defined on a space with higher dimensions.[54]
Orderliness and simplicity
[edit]A point process withstationary incrementsis sometimes said to beorderly[55]orregularif:[56]
wherelittle-o notationis being used. A point process is called asimple point processwhen the probability of any of its two points coinciding in the same position, on the underlying space, is zero. For point processes in general on the real line, the property of orderliness implies that the process is simple,[57]which is the case for the homogeneous Poisson point process.[58]
Martingale characterization
[edit]On the real line, the homogeneous Poisson point process has a connection to the theory ofmartingalesvia the following characterization: a point process is the homogeneous Poisson point process if and only if
Relationship to other processes
[edit]On the real line, the Poisson process is a type of continuous-timeMarkov processknown as abirth process,a special case of thebirth–death process(with just births and zero deaths).[61][62]More complicated processes with theMarkov property,such asMarkov arrival processes,have been defined where the Poisson process is a special case.[47]
Restricted to the half-line
[edit]If the homogeneous Poisson process is considered just on the half-line,which can be the case whenrepresents time[31]then the resulting process is not truly invariant under translation.[54]In that case the Poisson process is no longer stationary, according to some definitions of stationarity.[28]
Applications
[edit]There have been many applications of the homogeneous Poisson process on the real line in an attempt to model seemingly random and independent events occurring. It has a fundamental role inqueueing theory,which is the probability field of developing suitable stochastic models to represent the random arrival and departure of certain phenomena.[15][47]For example, customers arriving and being served or phone calls arriving at a phone exchange can be both studied with techniques from queueing theory.
Generalizations
[edit]The homogeneous Poisson process on the real line is considered one of the simplest stochastic processes for counting random numbers of points.[63][64]This process can be generalized in a number of ways. One possible generalization is to extend the distribution of interarrival times from the exponential distribution to other distributions, which introduces the stochastic process known as arenewal process.Another generalization is to define the Poisson point process on higher dimensional spaces such as the plane.[65]
Spatial Poisson point process
[edit]Aspatial Poisson processis a Poisson point process defined in the plane.[59][66]For its mathematical definition, one first considers a bounded, open or closed (or more precisely,Borel measurable) regionof the plane. The number of points of a point processexisting in this regionis a random variable, denoted by.If the points belong to a homogeneous Poisson process with parameter,then the probability ofpoints existing inis given by:
wheredenotes the area of.
For some finite integer,we can give the finite-dimensional distribution of the homogeneous Poisson point process by first considering a collection of disjoint, bounded Borel (measurable) sets.The number of points of the point processexisting incan be written as.Then the homogeneous Poisson point process with parameterhas the finite-dimensional distribution:[67]
Applications
[edit]The spatial Poisson point process features prominently inspatial statistics,[21][22]stochastic geometry,andcontinuum percolation theory.[23]This point process is applied in various physical sciences such as a model developed for alpha particles being detected. In recent years, it has been frequently used to model seemingly disordered spatial configurations of certain wireless communication networks.[17][18][19]For example, models for cellular or mobile phone networks have been developed where it is assumed the phone network transmitters, known as base stations, are positioned according to a homogeneous Poisson point process.
Defined in higher dimensions
[edit]The previous homogeneous Poisson point process immediately extends to higher dimensions by replacing the notion of area with (high dimensional) volume. For some bounded regionof Euclidean space,if the points form a homogeneous Poisson process with parameter,then the probability ofpoints existing inis given by:
wherenow denotes the-dimensional volume of.Furthermore, for a collection of disjoint, bounded Borel sets,letdenote the number of points ofexisting in.Then the corresponding homogeneous Poisson point process with parameterhas the finite-dimensional distribution:[69]
Homogeneous Poisson point processes do not depend on the position of the underlying space through its parameter,which implies it is both a stationary process (invariant to translation) and an isotropic (invariant to rotation) stochastic process.[28]Similarly to the one-dimensional case, the homogeneous point process is restricted to some bounded subset of,then depending on some definitions of stationarity, the process is no longer stationary.[28][54]
Points are uniformly distributed
[edit]If the homogeneous point process is defined on the real line as a mathematical model for occurrences of some phenomenon, then it has the characteristic that the positions of these occurrences or events on the real line (often interpreted as time) will be uniformly distributed. More specifically, if an event occurs (according to this process) in an intervalwhere,then its location will be a uniform random variable defined on that interval.[67]Furthermore, the homogeneous point process is sometimes called theuniformPoisson point process (seeTerminology). This uniformity property extends to higher dimensions in the Cartesian coordinate, but not in, for example, polar coordinates.[70][71]
Inhomogeneous Poisson point process
[edit]TheinhomogeneousornonhomogeneousPoisson point process(seeTerminology) is a Poisson point process with a Poisson parameter set as some location-dependent function in the underlying space on which the Poisson process is defined. For Euclidean space,this is achieved by introducing a locally integrable positive function,such that for every bounded regionthe (-dimensional) volume integral ofover regionis finite. In other words, if this integral, denoted by,is:[45]
whereis a (-dimensional) volume element,[c]then for every collection of disjoint boundedBorel measurablesets,an inhomogeneous Poisson process with (intensity) functionhas the finite-dimensional distribution:[69]
Furthermore,has the interpretation of being the expected number of points of the Poisson process located in the bounded region,namely
Defined on the real line
[edit]On the real line, the inhomogeneous or non-homogeneous Poisson point process has mean measure given by a one-dimensional integral. For two real numbersand,where,denote bythe number points of an inhomogeneous Poisson process with intensity functionoccurring in the interval.The probability ofpoints existing in the above intervalis given by:
where the mean or intensity measure is:
which means that the random variableis a Poisson random variable with mean.
A feature of the one-dimension setting, is that an inhomogeneous Poisson process can be transformed into a homogeneous by amonotone transformationor mapping, which is achieved with the inverse of.[72][73]
Counting process interpretation
[edit]The inhomogeneous Poisson point process, when considered on the positive half-line, is also sometimes defined as a counting process. With this interpretation, the process, which is sometimes written as,represents the total number of occurrences or events that have happened up to and including time.A counting process is said to be an inhomogeneous Poisson counting process if it has the four properties:[34][74]
- hasindependent increments;
- and
whereis asymptotic orlittle-o notationforas. In the case of point processes with refractoriness (e.g., neural spike trains) a stronger version of property 4 applies:[75].
The above properties imply thatis a Poisson random variable with the parameter (or mean)
which implies
Spatial Poisson process
[edit]An inhomogeneous Poisson process defined in the planeis called aspatial Poisson process[16]It is defined with intensity function and its intensity measure is obtained performing a surface integral of its intensity function over some region.[20][76]For example, its intensity function (as a function of Cartesian coordinatesand) can be
so the corresponding intensity measure is given by the surface integral
whereis some bounded region in the plane.
In higher dimensions
[edit]In the plane,corresponds to a surface integral while inthe integral becomes a (-dimensional) volume integral.
Applications
[edit]When the real line is interpreted as time, the inhomogeneous process is used in the fields of counting processes and in queueing theory.[74][77]Examples of phenomena which have been represented by or appear as an inhomogeneous Poisson point process include:
In the plane, the Poisson point process is important in the related disciplines of stochastic geometry[1][35]and spatial statistics.[21][22]The intensity measure of this point process is dependent on the location of underlying space, which means it can be used to model phenomena with a density that varies over some region. In other words, the phenomena can be represented as points that have a location-dependent density.[20]This processes has been used in various disciplines and uses include the study of salmon and sea lice in the oceans,[80]forestry,[6]and search problems.[81]
Interpretation of the intensity function
[edit]The Poisson intensity functionhas an interpretation, considered intuitive,[20]with the volume elementin the infinitesimal sense:is the infinitesimal probability of a point of a Poisson point process existing in a region of space with volumelocated at.[20]
For example, given a homogeneous Poisson point process on the real line, the probability of finding a single point of the process in a small interval of widthis approximately.In fact, such intuition is how the Poisson point process is sometimes introduced and its distribution derived.[82][43][83]
Simple point process
[edit]If a Poisson point process has an intensity measure that is a locally finite and diffuse (or non-atomic), then it is asimple point process.For a simple point process, the probability of a point existing at a single point or location in the underlying (state) space is either zero or one. This implies that, with probability one, no two (or more) points of a Poisson point process coincide in location in the underlying space.[84][18][85]
Simulation
[edit]Simulating a Poisson point process on a computer is usually done in a bounded region of space, known as a simulationwindow,and requires two steps: appropriately creating a random number of points and then suitably placing the points in a random manner. Both these two steps depend on the specific Poisson point process that is being simulated.[86][87]
Step 1: Number of points
[edit]The number of pointsin the window, denoted here by,needs to be simulated, which is done by using a (pseudo)-random number generatingfunction capable of simulating Poisson random variables.
Homogeneous case
[edit]For the homogeneous case with the constant,the mean of the Poisson random variableis set towhereis the length, area or (-dimensional) volume of.
Inhomogeneous case
[edit]For the inhomogeneous case,is replaced with the (-dimensional) volume integral
Step 2: Positioning of points
[edit]The second stage requires randomly placing thepoints in the window.
Homogeneous case
[edit]For the homogeneous case in one dimension, all points are uniformly and independently placed in the window or interval.For higher dimensions in a Cartesian coordinate system, each coordinate is uniformly and independently placed in the window.If the window is not a subspace of Cartesian space (for example, inside a unit sphere or on the surface of a unit sphere), then the points will not be uniformly placed in,and suitable change of coordinates (from Cartesian) are needed.[86]
Inhomogeneous case
[edit]For the inhomogeneous case, a couple of different methods can be used depending on the nature of the intensity function.[86]If the intensity function is sufficiently simple, then independent and random non-uniform (Cartesian or other) coordinates of the points can be generated. For example, simulating a Poisson point process on a circular window can be done for an isotropic intensity function (in polar coordinatesand), implying it is rotationally variant or independent ofbut dependent on,by a change of variable inif the intensity function is sufficiently simple.[86]
For more complicated intensity functions, one can use anacceptance-rejection method,which consists of using (or 'accepting') only certain random points and not using (or 'rejecting') the other points, based on the ratio:.[88]
whereis the point under consideration for acceptance or rejection.
That is, a location is uniformly randomly selected for consideration, then to determine whether to place a sample at that location a uniformly randomly drawn number inis compared to the probability density function,accepting if it is smaller than the probability density function, and repeating until the previously chosen number of samples have been drawn.
General Poisson point process
[edit]Inmeasure theory,the Poisson point process can be further generalized to what is sometimes known as thegeneral Poisson point process[20][89]orgeneral Poisson process[76]by using aRadon measure,which is alocally finite measure.In general, this Radon measurecan be atomic, which means multiple points of the Poisson point process can exist in the same location of the underlying space. In this situation, the number of points atis a Poisson random variable with mean.[89]But sometimes the converse is assumed, so the Radon measureisdiffuseor non-atomic.[20]
A point processis a general Poisson point process with intensityif it has the two following properties:[20]
- the number of points in a boundedBorel setis a Poisson random variable with mean.In other words, denote the total number of points located inby,then the probability of random variablebeing equal tois given by:
- the number of points indisjoint Borel sets formsindependent random variables.
The Radon measuremaintains its previous interpretation of being the expected number of points oflocated in the bounded region,namely
Furthermore, ifis absolutely continuous such that it has a density (which is theRadon–Nikodym densityor derivative) with respect to the Lebesgue measure, then for all Borel setsit can be written as:
where the densityis known, among other terms, as the intensity function.
History
[edit]Poisson distribution
[edit]Despite its name, the Poisson point process was neither discovered nor studied by its namesake. It is cited as an example ofStigler's law of eponymy.[2][3]The name arises from the process's inherent relation to the Poisson distribution, derived by Poisson as a limiting case of thebinomial distribution.[90]It describes theprobabilityof the sum ofBernoulli trialswith probability,often likened to the number of heads (or tails) afterbiasedcoin flipswith the probability of a head (or tail) occurring being.For some positive constant,asincreases towards infinity anddecreases towards zero such that the productis fixed, the Poisson distribution more closely approximates that of the binomial.[91]
Poisson derived the Poisson distribution, published in 1841, by examining the binomial distribution in thelimitof(to zero) and(to infinity). It only appears once in all of Poisson's work,[92]and the result was not well known during his time. Over the following years others used the distribution without citing Poisson, includingPhilipp Ludwig von SeidelandErnst Abbe.[93] [2]At the end of the 19th century,Ladislaus Bortkiewiczstudied the distribution, citing Poisson, using real data on the number of deaths from horse kicks in thePrussian army.[90][94]
Discovery
[edit]There are a number of claims for early uses or discoveries of the Poisson point process.[2][3]For example,John Michellin 1767, a decade before Poisson was born, was interested in the probability a star being within a certain region of another star under the erroneous assumption that the stars were "scattered by mere chance", and studied an example consisting of the six brighteststarsin thePleiades,without deriving the Poisson distribution. This work inspiredSimon Newcombto study the problem and to calculate the Poisson distribution as an approximation for the binomial distribution in 1860.[3]
At the beginning of the 20th century the Poisson process (in one dimension) would arise independently in different situations.[2][3] In Sweden 1903,Filip Lundbergpublished a thesis containing work, now considered fundamental and pioneering, where he proposed to model insurance claims with a homogeneous Poisson process.[95][96]
InDenmarkA.K. Erlangderived the Poisson distribution in 1909 when developing a mathematical model for the number of incoming phone calls in a finite time interval. Erlang unaware of Poisson's earlier work and assumed that the number phone calls arriving in each interval of time were independent of each other. He then found the limiting case, which is effectively recasting the Poisson distribution as a limit of the binomial distribution.[2]
In 1910Ernest RutherfordandHans Geigerpublished experimental results on counting alpha particles. Their experimental work had mathematical contributions fromHarry Bateman,who derived Poisson probabilities as a solution to a family of differential equations, though the solution had been derived earlier, resulting in the independent discovery of the Poisson process.[2]After this time, there were many studies and applications of the Poisson process, but its early history is complicated, which has been explained by the various applications of the process in numerous fields by biologists, ecologists, engineers and various physical scientists.[2]
Early applications
[edit]The years after 1909 led to a number of studies and applications of the Poisson point process, however, its early history is complex, which has been explained by the various applications of the process in numerous fields bybiologists,ecologists, engineers and others working in thephysical sciences.The early results were published in different languages and in different settings, with no standard terminology and notation used.[2]For example, in 1922 SwedishchemistandNobel LaureateTheodor Svedbergproposed a model in which a spatial Poisson point process is the underlying process to study how plants are distributed in plant communities.[97]A number of mathematicians started studying the process in the early 1930s, and important contributions were made byAndrey Kolmogorov,William FellerandAleksandr Khinchin,[2]among others.[98]In the field ofteletraffic engineering,mathematicians and statisticians studied and used Poisson and other point processes.[99]
History of terms
[edit]The SwedeConny Palmin his 1943dissertationstudied the Poisson and other point processes in theone-dimensionalsetting by examining them in terms of the statistical or stochastic dependence between the points in time.[100][99]In his work exists the first known recorded use of the termpoint processesasPunktprozessein German.[100][3]
It is believed[2]that William Feller was the first in print to refer to it as thePoisson processin a 1940 paper. Although the Swede Ove Lundberg used the termPoisson processin his 1940 PhD dissertation,[3]in which Feller was acknowledged as an influence,[101]it has been claimed that Feller coined the term before 1940.[91]It has been remarked that both Feller and Lundberg used the term as though it were well-known, implying it was already in spoken use by then.[3]Feller worked from 1936 to 1939 alongsideHarald CramératStockholm University,where Lundberg was a PhD student under Cramér who did not use the termPoisson processin a book by him, finished in 1936, but did in subsequent editions, which his has led to the speculation that the termPoisson processwas coined sometime between 1936 and 1939 at the Stockholm University.[3]
Terminology
[edit]The terminology of point process theory in general has been criticized for being too varied.[3]In addition to the wordpointoften being omitted,[65][24]the homogeneous Poisson (point) process is also called astationaryPoisson (point) process,[49]as well asuniformPoisson (point) process.[44]The inhomogeneous Poisson point process, as well as being callednonhomogeneous,[49]is also referred to as thenon-stationaryPoisson process.[74][102]
The termpoint processhas been criticized, as the termprocesscan suggest over time and space, sorandom point field,[103]resulting in the termsPoisson random point fieldorPoisson point fieldbeing also used.[104]A point process is considered, and sometimes called, a random counting measure,[105]hence the Poisson point process is also referred to as aPoisson random measure,[106]a term used in the study of Lévy processes,[106][107]but some choose to use the two terms for Poisson points processes defined on two different underlying spaces.[108]
The underlying mathematical space of the Poisson point process is called acarrier space,[109][110]orstate space,though the latter term has a different meaning in the context of stochastic processes. In the context of point processes, the term "state space" can mean the space on which the point process is defined such as the real line,[111][112]which corresponds to the index set[113]or parameter set[114]in stochastic process terminology.
The measureis called theintensity measure,[115]mean measure,[38]orparameter measure,[69]as there are no standard terms.[38]Ifhas a derivative or density, denoted by,is called theintensity functionof the Poisson point process.[20]For the homogeneous Poisson point process, the derivative of the intensity measure is simply a constant,which can be referred to as therate,usually when the underlying space is the real line, or theintensity.[44]It is also called themean rateor themean density[116]orrate.[34]For,the corresponding process is sometimes referred to as thestandard Poisson(point) process.[45][59][117]
The extent of the Poisson point process is sometimes called theexposure.[118][119]
Notation
[edit]The notation of the Poisson point process depends on its setting and the field it is being applied in. For example, on the real line, the Poisson process, both homogeneous or inhomogeneous, is sometimes interpreted as a counting process, and the notationis used to represent the Poisson process.[31][34]
Another reason for varying notation is due to the theory of point processes, which has a couple of mathematical interpretations. For example, a simple Poisson point process may be considered as a random set, which suggests the notation,implying thatis a random point belonging to or being an element of the Poisson point process.Another, more general, interpretation is to consider a Poisson or any other point process as a random counting measure, so one can write the number of points of a Poisson point processbeing found or located in some (Borel measurable) regionas,which is a random variable. These different interpretations results in notation being used from mathematical fields such as measure theory and set theory.[120]
For general point processes, sometimes a subscript on the point symbol, for example,is included so one writes (with set notation)instead of,andcan be used for thebound variablein integral expressions such as Campbell's theorem, instead of denoting random points.[18]Sometimes an uppercase letter denotes the point process, while a lowercase denotes a point from the process, so, for example, the pointorbelongs to or is a point of the point process,and be written with set notation asor.[112]
Furthermore, the set theory and integral or measure theory notation can be used interchangeably. For example, for a point processdefined on the Euclidean state spaceand a (measurable) functionon,the expression
demonstrates two different ways to write a summation over a point process (see alsoCampbell's theorem (probability)). More specifically, the integral notation on the left-hand side is interpreting the point process as a random counting measure while the sum on the right-hand side suggests a random set interpretation.[120]
Functionals and moment measures
[edit]In probability theory, operations are applied to random variables for different purposes. Sometimes these operations are regular expectations that produce the average or variance of a random variable. Others, such as characteristic functions (or Laplace transforms) of a random variable can be used to uniquely identify or characterize random variables and prove results like the central limit theorem.[121]In the theory of point processes there exist analogous mathematical tools which usually exist in the forms of measures and functionals instead of moments and functions respectively.[122][123]
Laplace functionals
[edit]For a Poisson point processwith intensity measureon some space,theLaplace functionalis given by:[18]
One version ofCampbell's theoreminvolves the Laplace functional of the Poisson point process.
Probability generating functionals
[edit]The probability generating function of non-negative integer-valued random variable leads to the probability generating functional being defined analogously with respect to any non-negative bounded functiononsuch that.For a point processthe probability generating functional is defined as:[124]
where the product is performed for all the points in.If the intensity measureofis locally finite, then theis well-defined for any measurable functionon.For a Poisson point process with intensity measurethe generating functional is given by:
which in the homogeneous case reduces to
Moment measure
[edit]For a general Poisson point process with intensity measurethe firstmoment measureis its intensity measure:[18][19]
which for a homogeneous Poisson point process withconstantintensitymeans:
whereis the length, area or volume (or more generally, theLebesgue measure) of.
The Mecke equation
[edit]The Mecke equation characterizes the Poisson point process. Letbe the space of all-finite measures on some general space.A point processwith intensityonis a Poisson point process if and only if for all measurable functionsthe following holds
For further details see.[125]
Factorial moment measure
[edit]For a general Poisson point process with intensity measurethe-thfactorial moment measureis given by the expression:[126]
whereis the intensity measure or first moment measure of,which for some Borel setis given by
For a homogeneous Poisson point process the-th factorial moment measure is simply:[18][19]
whereis the length, area, or volume (or more generally, theLebesgue measure) of.Furthermore, the-th factorial moment density is:[126]
Avoidance function
[edit]Theavoidance function[71]orvoid probability[120]of a point processis defined in relation to some set,which is a subset of the underlying space,as the probability of no points ofexisting in.More precisely,[127]for a test set,the avoidance function is given by:
For a general Poisson point processwith intensity measure,its avoidance function is given by:
Rényi's theorem
[edit]Simple point processes are completely characterized by their void probabilities.[128]In other words, complete information of a simple point process is captured entirely in its void probabilities, and two simple point processes have the same void probabilities if and if only if they are the same point processes. The case for Poisson process is sometimes known asRényi's theorem,which is named afterAlfréd Rényiwho discovered the result for the case of a homogeneous point process in one-dimension.[129]
In one form,[129]the Rényi's theorem says for a diffuse (or non-atomic) Radon measureonand a setis a finite union of rectangles (so not Borel[d]) that ifis a countable subset ofsuch that:
thenis a Poisson point process with intensity measure.
Point process operations
[edit]Mathematical operations can be performed on point processes to get new point processes and develop new mathematical models for the locations of certain objects. One example of an operation is known as thinning which entails deleting or removing the points of some point process according to a rule, creating a new process with the remaining points (the deleted points also form a point process).[131]
Thinning
[edit]For the Poisson process, the independent-thinning operations results in another Poisson point process. More specifically, a-thinning operation applied to a Poisson point process with intensity measuregives a point process of removed points that is also Poisson point processwith intensity measure,which for a bounded Borel setis given by:
This thinning result of the Poisson point process is sometimes known asPrekopa's theorem.[132]Furthermore, after randomly thinning a Poisson point process, the kept or remaining points also form a Poisson point process, which has the intensity measure
The two separate Poisson point processes formed respectively from the removed and kept points are stochastically independent of each other.[131]In other words, if a region is known to containkept points (from the original Poisson point process), then this will have no influence on the random number of removed points in the same region. This ability to randomly create two independent Poisson point processes from one is sometimes known assplitting[133][134]the Poisson point process.
Superposition
[edit]If there is a countable collection of point processes,then their superposition, or, in set theory language, their union, which is[135]
also forms a point process. In other words, any points located in any of the point processeswill also be located in the superposition of these point processes.
Superposition theorem
[edit]Thesuperposition theoremof the Poisson point process says that the superposition of independent Poisson point processeswith mean measureswill also be a Poisson point process with mean measure[136][91]
In other words, the union of two (or countably more) Poisson processes is another Poisson process. If a pointis sampled from a countableunion of Poisson processes, then the probability that the pointbelongs to theth Poisson processis given by:
For two homogeneous Poisson processes with intensities,the two previous expressions reduce to
and
Clustering
[edit]The operation clustering is performed when each pointof some point processis replaced by another (possibly different) point process. If the original processis a Poisson point process, then the resulting processis called a Poisson cluster point process.
Random displacement
[edit]A mathematical model may require randomly moving points of a point process to other locations on the underlying mathematical space, which gives rise to a point process operation known as displacement[137]or translation.[138]The Poisson point process has been used to model, for example, the movement of plants between generations, owing to the displacement theorem,[137]which loosely says that the random independent displacement of points of a Poisson point process (on the same underlying space) forms another Poisson point process.
Displacement theorem
[edit]One version of the displacement theorem[137]involves a Poisson point processonwith intensity function.It is then assumed the points ofare randomly displaced somewhere else inso that each point's displacement is independent and that the displacement of a point formerly atis a random vector with a probability density.[e]Then the new point processis also a Poisson point process with intensity function
If the Poisson process is homogeneous withand ifis a function of,then
In other words, after each random and independent displacement of points, the original Poisson point process still exists.
The displacement theorem can be extended such that the Poisson points are randomly displaced from one Euclidean spaceto another Euclidean space,whereis not necessarily equal to.[18]
Mapping
[edit]Another property that is considered useful is the ability to map a Poisson point process from one underlying space to another space.[139]
Mapping theorem
[edit]If the mapping (or transformation) adheres to some conditions, then the resulting mapped (or transformed) collection of points also form a Poisson point process, and this result is sometimes referred to as themapping theorem.[139][140]The theorem involves some Poisson point process with mean measureon some underlying space. If the locations of the points are mapped (that is, the point process is transformed) according to some function to another underlying space, then the resulting point process is also a Poisson point process but with a different mean measure.
More specifically, one can consider a (Borel measurable) functionthat maps a point processwith intensity measurefrom one space,to another spacein such a manner so that the new point processhas the intensity measure:
with no atoms, whereis a Borel set anddenotes the inverse of the function.Ifis a Poisson point process, then the new processis also a Poisson point process with the intensity measure.
Approximations with Poisson point processes
[edit]The tractability of the Poisson process means that sometimes it is convenient to approximate a non-Poisson point process with a Poisson one. The overall aim is to approximate both the number of points of some point process and the location of each point by a Poisson point process.[141]There a number of methods that can be used to justify, informally or rigorously, approximating the occurrence of random events or phenomena with suitable Poisson point processes. The more rigorous methods involve deriving upper bounds on the probability metrics between the Poisson and non-Poisson point processes, while other methods can be justified by less formal heuristics.[142]
Clumping heuristic
[edit]One method for approximating random events or phenomena with Poisson processes is called theclumping heuristic.[143]The general heuristic or principle involves using the Poisson point process (or Poisson distribution) to approximate events, which are considered rare or unlikely, of some stochastic process. In some cases these rare events are close to being independent, hence a Poisson point process can be used. When the events are not independent, but tend to occur in clusters orclumps,then if these clumps are suitably defined such that they are approximately independent of each other, then the number of clumps occurring will be close to a Poisson random variable[142]and the locations of the clumps will be close to a Poisson process.[143]
Stein's method
[edit]Stein's methodis a mathematical technique originally developed for approximating random variables such asGaussianand Poisson variables, which has also been applied to point processes. Stein's method can be used to derive upper bounds onprobability metrics,which give way to quantify how different two random mathematical objects vary stochastically.[141][144]Upperbounds on probability metrics such astotal variationandWasserstein distancehave been derived.[141]
Researchers have applied Stein's method to Poisson point processes in a number of ways,[141]such as usingPalm calculus.[110]Techniques based on Stein's method have been developed to factor into the upper bounds the effects of certainpoint process operationssuch as thinning and superposition.[145][146]Stein's method has also been used to derive upper bounds on metrics of Poisson and other processes such as theCox point process,which is a Poisson process with a random intensity measure.[141]
Convergence to a Poisson point process
[edit]In general, when an operation is applied to a general point process the resulting process is usually not a Poisson point process. For example, if a point process, other than a Poisson, has its points randomly and independently displaced, then the process would not necessarily be a Poisson point process. However, under certain mathematical conditions for both the original point process and the random displacement, it has been shown via limit theorems that if the points of a point process are repeatedly displaced in a random and independent manner, then the finite-distribution of the point process will converge (weakly) to that of a Poisson point process.[147]
Similar convergence results have been developed for thinning and superposition operations[147]that show that such repeated operations on point processes can, under certain conditions, result in the process converging to a Poisson point processes, provided a suitable rescaling of the intensity measure (otherwise values of the intensity measure of the resulting point processes would approach zero or infinity). Such convergence work is directly related to the results known as the Palm–Khinchin[f]equations, which has its origins in the work ofConny PalmandAleksandr Khinchin,[148]and help explains why the Poisson process can often be used as a mathematical model of various random phenomena.[147]
Generalizations of Poisson point processes
[edit]The Poisson point process can be generalized by, for example, changing its intensity measure or defining on more general mathematical spaces. These generalizations can be studied mathematically as well as used to mathematically model or represent physical phenomena.
Poisson-type random measures
[edit]ThePoisson-type random measures(PT) are a family of three random counting measures which are closed under restriction to a subspace, i.e. closed underPoint process operation#Thinning.These random measures are examples of themixed binomial processand share the distributional self-similarity property of thePoisson random measure.They are the only members of the canonical non-negativepower seriesfamily of distributions to possess this property and include thePoisson distribution,negative binomial distribution,andbinomial distribution.The Poisson random measure is independent on disjoint subspaces, whereas the other PT random measures (negative binomial and binomial) have positive and negative covariances. The PT random measures are discussed[149]and include thePoisson random measure,negative binomial random measure, and binomial random measure.
Poisson point processes on more general spaces
[edit]For mathematical models the Poisson point process is often defined in Euclidean space,[1][38]but has been generalized to more abstract spaces and plays a fundamental role in the study of random measures,[150][151]which requires an understanding of mathematical fields such as probability theory, measure theory and topology.[152]
In general, the concept of distance is of practical interest for applications, while topological structure is needed for Palm distributions, meaning that point processes are usually defined on mathematical spaces with metrics.[153]Furthermore, a realization of a point process can be considered as a counting measure, so points processes are types of random measures known as random counting measures.[117]In this context, the Poisson and other point processes have been studied on a locally compact second countable Hausdorff space.[154]
Cox point process
[edit]ACox point process,Cox processordoubly stochastic Poisson processis a generalization of the Poisson point process by letting its intensity measureto be also random and independent of the underlying Poisson process. The process is named afterDavid Coxwho introduced it in 1955, though other Poisson processes with random intensities had been independently introduced earlier by Lucien Le Cam and Maurice Quenouille.[3]The intensity measure may be a realization of random variable or a random field. For example, if thelogarithmof the intensity measure is aGaussian random field,then the resulting process is known as alog Gaussian Cox process.[155]More generally, the intensity measures is a realization of a non-negative locally finite random measure. Cox point processes exhibit aclusteringof points, which can be shown mathematically to be larger than those of Poisson point processes. The generality and tractability of Cox processes has resulted in them being used as models in fields such as spatial statistics[156]and wireless networks.[19]
Marked Poisson point process
[edit]For a given point process, each random point of a point process can have a random mathematical object, known as amark,randomly assigned to it. These marks can be as diverse as integers, real numbers, lines, geometrical objects or other point processes.[157][158]The pair consisting of a point of the point process and its corresponding mark is called a marked point, and all the marked points form amarked point process.[159]It is often assumed that the random marks are independent of each other and identically distributed, yet the mark of a point can still depend on the location of its corresponding point in the underlying (state) space.[160]If the underlying point process is a Poisson point process, then the resulting point process is amarked Poisson point process.[161]
Marking theorem
[edit]If a general point process is defined on somemathematical spaceand the random marks are defined on another mathematical space, then the marked point process is defined on theCartesian productof these two spaces. For a marked Poisson point process with independent and identically distributed marks, themarking theorem[160][162]states that this marked point process is also a (non-marked) Poisson point process defined on the aforementioned Cartesian product of the two mathematical spaces, which is not true for general point processes.
Compound Poisson point process
[edit]Thecompound Poisson point processorcompound Poisson processis formed by adding random values or weights to each point of Poisson point process defined on some underlying space, so the process is constructed from a marked Poisson point process, where the marks form a collection ofindependent and identically distributednon-negative random variables. In other words, for each point of the original Poisson process, there is an independent and identically distributed non-negative random variable, and then the compound Poisson process is formed from the sum of all the random variables corresponding to points of the Poisson process located in some region of the underlying mathematical space.[163]
If there is a marked Poisson point process formed from a Poisson point process(defined on, for example,) and a collection of independent and identically distributed non-negative markssuch that for each pointof the Poisson processthere is a non-negative random variable,the resulting compound Poisson process is then:[164]
whereis a Borel measurable set.
If general random variablestake values in, for example,-dimensional Euclidean space,the resulting compound Poisson process is an example of aLévy processprovided that it is formed from a homogeneous Point processdefined on the non-negative numbers.[165]
Failure process with the exponential smoothing of intensity functions
[edit]The failure process with the exponential smoothing of intensity functions (FP-ESI) is an extension of the nonhomogeneous Poisson process. The intensity function of an FP-ESI is an exponential smoothing function of the intensity functions at the last time points of event occurrences and outperforms other nine stochastic processes on 8 real-world failure datasets when the models are used to fit the datasets,[166]where the model performance is measured in terms of AIC (Akaike information criterion) and BIC (Bayesian information criterion).
See also
[edit]- Boolean model (probability theory)
- Continuum percolation theory
- Compound Poisson process
- Cox process
- Point process
- Stochastic geometry
- Stochastic geometry models of wireless networks
- Markovian arrival processes
Notes
[edit]- ^See Section 2.3.2 of Chiu, Stoyan, Kendall, Mecke[1]or Section 1.3 of Kingman.[24]
- ^For example, it is possible for an eventnothappening in the queueing theory sense to be an event in the probability theory sense.
- ^Instead ofand,one could write, for example, in (two-dimensional) polar coordinatesand,whereanddenote the radial and angular coordinates respectively, and sowould be an area element in this example.
- ^This setis formed by a finite number of unions, whereas a Borel set is formed by a countable number of set operations.[130]
- ^Kingman[137]calls this a probability density, but in other resources this is called aprobability kernel.[18]
- ^Also spelt Palm–Khintchine in, for example,Point ProcessesbyCox & Isham (1980,p. 41)
References
[edit]Specific
[edit]- ^abcdefSung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons.ISBN978-1-118-65825-3.
- ^abcdefghijkStirzaker, David (2000). "Advice to Hedgehogs, or, Constants Can Vary".The Mathematical Gazette.84(500): 197–210.doi:10.2307/3621649.ISSN0025-5572.JSTOR3621649.S2CID125163415.
- ^abcdefghijkGuttorp, Peter; Thorarinsdottir, Thordis L. (2012). "What Happened to Discrete Chaos, the Quenouille Process, and the Sharp Markov Property? Some History of Stochastic Point Processes".International Statistical Review.80(2): 253–268.doi:10.1111/j.1751-5823.2012.00181.x.ISSN0306-7734.S2CID80836.
- ^G. J. Babu and E. D. Feigelson. Spatial point processes in astronomy.Journal of statistical planning and inference,50(3):311–326, 1996.
- ^H. G. Othmer, S. R. Dunbar, and W. Alt. Models of dispersal in biological systems.Journal of mathematical biology,26(3):263–298, 1988.
- ^abH. Thompson. Spatial point processes, with applications to ecology.Biometrika,42(1/2):102–115, 1955.
- ^C. B. Connor and B. E. Hill. Three nonhomogeneous poisson models for the probability of basaltic volcanism: application to the yucca mountain region, nevada.Journal of Geophysical Research: Solid Earth (1978–2012),100(B6):10107–10125, 1995.
- ^Gardner, J. K.; Knopoff, L. (1974)."Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?".Bulletin of the Seismological Society of America.64(5): 1363–1367.Bibcode:1974BuSSA..64.1363G.doi:10.1785/BSSA0640051363.S2CID131035597.
- ^J. D. Scargle. Studies in astronomical time series analysis. v. bayesian blocks, a new method to analyze structure in photon counting data.The Astrophysical Journal,504(1):405, 1998.
- ^P. Aghion and P. Howitt. A Model of Growth through Creative Destruction.Econometrica,60(2). 323–351, 1992.
- ^M. Bertero, P. Boccacci, G. Desidera, and G. Vicidomini. Image deblurring with poisson data: from cells to galaxies.Inverse Problems,25(12):123006, 2009.
- ^"The Color of Noise".
- ^abF. Baccelli and B. Błaszczyszyn.Stochastic Geometry and Wireless Networks, Volume II- Applications,volume 4, No 1–2 ofFoundations and Trends in Networking.NoW Publishers, 2009.
- ^M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti. Stochastic geometry and random graphs for the analysis and design of wireless networks.IEEE JSAC,27(7):1029–1046, September 2009.
- ^abLeonard Kleinrock (1976).Queueing Systems: Theory.Wiley.ISBN978-0-471-49110-1.
- ^abA. Baddeley; I. Bárány; R. Schneider (26 October 2006).Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004.Springer. p. 10.ISBN978-3-540-38175-4.
- ^abJ. G. Andrews, R. K. Ganti, M. Haenggi, N. Jindal, and S. Weber. A primer on spatial modeling and analysis in wireless networks.Communications Magazine, IEEE,48(11):156–163, 2010.
- ^abcdefghiF. Baccelli and B. Błaszczyszyn.Stochastic Geometry and Wireless Networks, Volume I – Theory,volume 3, No 3–4 ofFoundations and Trends in Networking.NoW Publishers, 2009.
- ^abcdeMartin Haenggi (2013).Stochastic Geometry for Wireless Networks.Cambridge University Press.ISBN978-1-107-01469-5.
- ^abcdefghiSung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 51–52.ISBN978-1-118-65825-3.
- ^abcdA. Baddeley; I. Bárány; R. Schneider (26 October 2006).Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004.Springer.ISBN978-3-540-38175-4.
- ^abcJesper Moller; Rasmus Plenge Waagepetersen (25 September 2003).Statistical Inference and Simulation for Spatial Point Processes.CRC Press.ISBN978-0-203-49693-0.
- ^abR. Meester and R. Roy. Continuum percolation, volume 119 of cambridge tracts in mathematics, 1996.
- ^abcdJ. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press.ISBN978-0-19-159124-2.
- ^Daley & Vere-Jones (2003),p. 27.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 35–36.ISBN978-1-118-65825-3.
- ^abcSung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 41 and 51.ISBN978-1-118-65825-3.
- ^abcdSung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 41–42.ISBN978-1-118-65825-3.
- ^Daley & Vere-Jones (2003),p. 22.
- ^J. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. pp. 73–76.ISBN978-0-19-159124-2.
- ^abcdeH. C. Tijms (18 April 2003).A First Course in Stochastic Models.John Wiley & Sons. pp. 1–2.ISBN978-0-471-49880-3.
- ^Daley & Vere-Jones (2003),pp. 26–37.
- ^H. C. Tijms (18 April 2003).A First Course in Stochastic Models.John Wiley & Sons. pp. 1 and 9.ISBN978-0-471-49880-3.
- ^abcdefgSheldon M. Ross (1996).Stochastic processes.Wiley. pp. 59–60.ISBN978-0-471-12062-9.
- ^abA. Baddeley. A crash course in stochastic geometry.Stochastic Geometry: Likelihood and Computation Eds OE Barndorff-Nielsen, WS Kendall, HNN van Lieshout (London: Chapman and Hall),pages 1–35, 1999.
- ^D.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. pp. 1–2.ISBN978-0-387-21337-8.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 110–111.ISBN978-1-118-65825-3.
- ^abcdeJ. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. pp. 11–12.ISBN978-0-19-159124-2.
- ^Daley & Vere-Jones (2003),pp. 34–39.
- ^abDaley, Daryl J.; Vere-Jones, David (2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer. p. 26.ISBN978-0387213378.
- ^Jesper Moller; Rasmus Plenge Waagepetersen (25 September 2003).Statistical Inference and Simulation for Spatial Point Processes.CRC Press. pp. 15–16.ISBN978-0-203-49693-0.
- ^Roy L. Streit (15 September 2010).Poisson Point Processes: Imaging, Tracking, and Sensing.Springer Science & Business Media. pp. 7–8.ISBN978-1-4419-6923-1.
- ^abW. Feller. Introduction to probability theory and its applications, vol. ii pod. 1974.
- ^abcdJ. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 13.ISBN978-0-19-159124-2.
- ^abcJesper Moller; Rasmus Plenge Waagepetersen (25 September 2003).Statistical Inference and Simulation for Spatial Point Processes.CRC Press. p. 14.ISBN978-0-203-49693-0.
- ^Daley & Vere-Jones (2003),p. 20.
- ^abcdH. C. Tijms (18 April 2003).A First Course in Stochastic Models.John Wiley & Sons.ISBN978-0-471-49880-3.
- ^Sheldon M. Ross (1996).Stochastic processes.Wiley. p. 64.ISBN978-0-471-12062-9.
- ^abcdefgDaley, Daryl J.; Vere-Jones, David (2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer. p. 19.ISBN978-0387213378.
- ^Daley & Vere-Jones (2003),pp. 19–23.
- ^J. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 42.ISBN978-0-19-159124-2.
- ^Henk C. Tijms (6 May 2003).A First Course in Stochastic Models.Wiley. pp. 2–3.ISBN978-0-471-49881-0.
- ^Sheldon M. Ross (1996).Stochastic processes.Wiley. pp. 35–36.ISBN978-0-471-12062-9.
- ^abcJ. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. pp. 38–39.ISBN978-0-19-159124-2.
- ^Daley & Vere-Jones (2003),pp. 29–30.
- ^Sheldon M. Ross (1996).Stochastic processes.Wiley. p. 151.ISBN978-0-471-12062-9.
- ^Cox & Isham (1980),p. 25.
- ^Daley, Daryl J.; Vere-Jones, David (2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer. p. 29.ISBN978-0387213378.
- ^abcE. Merzbach and D. Nualart. A characterization of the spatial poisson process and changing time.The Annals of Probability,14(4):1380–1390, 1986.
- ^Feigin, Paul D. (1979)."On the Characterization of Point Processes with the Order Statistic Property".Journal of Applied Probability.16(2): 297–304.doi:10.2307/3212898.JSTOR3212898.S2CID123904407.
- ^Sheldon M. Ross (1996).Stochastic processes.Wiley. p. 235.ISBN978-0-471-12062-9.
- ^A. Papoulis and S. U. Pillai.Probability, random variables, and stochastic processes.Tata McGraw-Hill Education, 2002.
- ^Cox & Isham (1980),p. 3.
- ^D. Snyder and M. Miller. Random point processes in time and space 2e springer-verlag.New York, NY,1991.
- ^abDaley, Daryl J.; Vere-Jones, David (2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer.ISBN978-0387213378.
- ^Lawson, A. B. (1993). "A deviance residual for heterogeneous spatial poisson processes".Biometrics.49(3): 889–897.doi:10.2307/2532210.JSTOR2532210.
- ^abDaley, Daryl J.; Vere-Jones, David (2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer. pp. 19–23.ISBN978-0387213378.
- ^Lee, C.-H.; Shih, C.-Y.; Chen, Y.-S. (2012). "Stochastic geometry based models for modeling cellular networks in urban areas".Wireless Networks.19(6): 1063–1072.doi:10.1007/s11276-012-0518-0.S2CID8409538.
- ^abcD.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. p. 31.ISBN978-0-387-21337-8.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 38–40 and 53–54.ISBN978-1-118-65825-3.
- ^abD.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. p. 25.ISBN978-0-387-21337-8.
- ^J. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. X.ISBN978-0-19-159124-2.
- ^Roy L. Streit (15 September 2010).Poisson Point Processes: Imaging, Tracking, and Sensing.Springer Science & Business Media. p. 6.ISBN978-1-4419-6923-1.
- ^abcH. C. Tijms (18 April 2003).A First Course in Stochastic Models.John Wiley & Sons. pp. 22–23.ISBN978-0-471-49880-3.
- ^L. Citi; D. Ba; E.N. Brown & R. Barbieri (2014)."Likelihood methods for point processes with refractoriness"(PDF).Neural Computation.26(2): 237–263.doi:10.1162/NECO_a_00548.hdl:1721.1/85015.PMID24206384.S2CID1436173.
- ^abA. Baddeley; I. Bárány; R. Schneider (26 October 2006).Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004.Springer. p. 12.ISBN978-3-540-38175-4.
- ^Sheldon M. Ross (1996).Stochastic processes.Wiley. pp. 78–81.ISBN978-0-471-12062-9.
- ^A. Heuer, C. Mueller, and O. Rubner. Soccer: Is scoring goals a predictable Poissonian process?EPL,89(3):38007, 2010.
- ^J. Y. Hwang, W. Kuo, and C. Ha. Modeling of integrated circuit yield using a spatial nonhomogeneous poisson process.Semiconductor Manufacturing, IEEE Transactions on,24(3):377–384, 2011.
- ^M. Krko{\vs}ek, M. A. Lewis, and J. P. Volpe. Transmission dynamics of parasitic sea lice from farm to wild salmon.Proceedings of the Royal Society B: Biological Sciences,272(1564):689–696, 2005.
- ^P. A. Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes by thinning.Naval Research Logistics Quarterly,26(3):403–413, 1979.
- ^J. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 10.ISBN978-0-19-159124-2.
- ^Cox & Isham (1980),pp. 3–6.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 44.ISBN978-1-118-65825-3.
- ^Martin Haenggi (2013).Stochastic Geometry for Wireless Networks.Cambridge University Press. p. 11.ISBN978-1-107-01469-5.
- ^abcdSung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 53–55.ISBN978-1-118-65825-3.
- ^Roy L. Streit (15 September 2010).Poisson Point Processes: Imaging, Tracking, and Sensing.Springer Science & Business Media. pp. 13–14.ISBN978-1-4419-6923-1.
- ^Roy L. Streit (15 September 2010).Poisson Point Processes: Imaging, Tracking, and Sensing.Springer Science & Business Media. pp. 14–16.ISBN978-1-4419-6923-1.
- ^abMartin Haenggi (2013).Stochastic Geometry for Wireless Networks.Cambridge University Press. pp. 18–19.ISBN978-1-107-01469-5.
- ^abGood, I. J. (1986)."Some Statistical Applications of Poisson's Work".Statistical Science.1(2): 157–170.doi:10.1214/ss/1177013690.ISSN0883-4237.
- ^abcGrimmett, G.; Stirzaker, D. (2001).Probability and Random Processes(3rd ed.). Oxford University Press.ISBN0-19-857222-0.
- ^Stigler, S. M. (1982). "Poisson on the Poisson Distribution".Statistics & Probability Letters.1(1): 33–35.doi:10.1016/0167-7152(82)90010-4.
- ^Daley & Vere-Jones (2003),pp. 8–9.
- ^Quine, M.;Seneta, E.(1987). "Bortkiewicz's data and the law of small numbers".International Statistical Review.55(2): 173–181.doi:10.2307/1403193.JSTOR1403193.
- ^Embrechts, Paul; Frey, Rüdiger; Furrer, Hansjörg (2001). "Stochastic processes in insurance and finance".Stochastic Processes: Theory and Methods.Handbook of Statistics. Vol. 19. p. 367.doi:10.1016/S0169-7161(01)19014-0.ISBN9780444500144.ISSN0169-7161.
- ^Cramér, Harald (1969). "Historical review of Filip Lundberg's works on risk theory".Scandinavian Actuarial Journal.1969(sup3): 6–12.doi:10.1080/03461238.1969.10404602.ISSN0346-1238.
- ^Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D. (2008).Statistical analysis and modelling of spatial point patterns.Vol. 70. John Wiley & Sons.ISBN978-0-470-01491-2.
- ^Kingman, J. (2009). "The first Erlang century—and the next".Queueing Systems.63(1–4): 3–12.doi:10.1007/s11134-009-9147-4.S2CID38588726.
- ^abHaugen, R. B. (1995). "The life and work of Conny Palm. some personal comments and experiences".VTT Symposium.154.Valtion teknillinen tutkimuskeskus: 207.ISSN0357-9387.
- ^abD.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. pp. 13–14.ISBN978-0-387-21337-8.
- ^J. Grandell.Mixed poisson processes,volume 77. CRC Press, 1997.
- ^Cox & Isham (1980),p. X.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 109.ISBN978-1-118-65825-3.
- ^G. Mikhailov and T. Averina. Statistical modeling of inhomogeneous random functions on the basis of poisson point fields. InDoklady Mathematics,volume 82, pages 701–704. Springer, 2010.
- ^I. Molchanov.Theory of random sets.Springer Science \& Business Media, 2006.
- ^abK. Sato. Lévy processes and infinite divisibility, 1999.
- ^V. Mandrekar and B. Rüdiger.Stochastic Integration in Banach Spaces.Springer, 2015.
- ^D. Applebaum.Lévy processes and stochastic calculus.Cambridge university press, 2009.
- ^E. F. Harding and R. Davidson.Stochastic geometry: a tribute to the memory of Rollo Davidson.Wiley, 1974.
- ^abL. H. Chen and A. Xia. Stein's method, Palm theory and Poisson process approximation.Annals of probability,pages 2545–2569, 2004.
- ^J. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 8.ISBN978-0-19-159124-2.
- ^abJesper Moller; Rasmus Plenge Waagepetersen (25 September 2003).Statistical Inference and Simulation for Spatial Point Processes.CRC Press. p. 7.ISBN978-0-203-49693-0.
- ^Emanuel Parzen (17 June 2015).Stochastic Processes.Courier Dover Publications. pp. 7–8 and 29–30.ISBN978-0-486-79688-8.
- ^John Lamperti (1977).Stochastic processes: a survey of the mathematical theory.Springer-Verlag. pp. 1 and 10–11.ISBN978-3-540-90275-1.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 112.ISBN978-1-118-65825-3.
- ^Daley, Daryl J.; Vere-Jones, David (2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer. p. 20.ISBN978-0387213378.
- ^abJ. Grandell. Point processes and random measures.Advances in Applied Probability,pages 502–526, 1977.
- ^Some Poisson models,Vose Software,retrieved18 January2016
- ^Helske, Jouni (25 June 2015),"KFAS: Exponential Family State Space Models in R"(PDF),Journal of Statistical Software,78(10),Comprehensive R Archive Network,arXiv:1612.01907,doi:10.18637/jss.v078.i10,S2CID14379617,retrieved18 January2016
- ^abcSung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 100.ISBN978-1-118-65825-3.
- ^A. Karr.Probability.Springer Texts in Statistics Series. Springer-Verlag, 1993.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 120–126.ISBN978-1-118-65825-3.
- ^D.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. pp. 52–75.ISBN978-0-387-21337-8.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 125–126.ISBN978-1-118-65825-3.
- ^Günter Last; Mathew Penrose (8 August 2017).Lectures on the Poisson Process(PDF).
- ^abSung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. pp. 47–48.ISBN978-1-118-65825-3.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 42.ISBN978-1-118-65825-3.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 43.ISBN978-1-118-65825-3.
- ^abJ. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 34.ISBN978-0-19-159124-2.
- ^D.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. pp. 384–385.ISBN978-0-387-21337-8.
- ^abSung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 158.ISBN978-1-118-65825-3.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 160.ISBN978-1-118-65825-3.
- ^D. BertsekasandJ. Tsitsiklis.Introduction to probability, ser.Athena Scientific optimization and computation series. Athena Scientific,2008.
- ^J. F. Hayes.Modeling and analysis of computer communications networks.Perseus Publishing, 1984.
- ^Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (27 June 2013).Stochastic Geometry and Its Applications.John Wiley & Sons. p. 165.ISBN978-1-118-65825-3.
- ^J. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 16.ISBN978-0-19-159124-2.
- ^abcdJ. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 61.ISBN978-0-19-159124-2.
- ^D.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. pp. 166–167.ISBN978-0-387-21337-8.
- ^abJ. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 18.ISBN978-0-19-159124-2.
- ^Geoffrey Grimmett; David Stirzaker (31 May 2001).Probability and Random Processes.OUP Oxford. p. 284.ISBN978-0-19-857222-0.
- ^abcdeL. H. Chen, A. Röllin, et al. Approximating dependent rare events.Bernoulli,19(4):1243–1267, 2013.
- ^abR. Arratia, S. Tavare, et al. {Review: D. Aldous, Probability Approximations via the Poisson Clumping Heuristic; AD Barbour, L. Holst, S. Janson, Poisson Approximation}.The Annals of Probability,21(4):2269–2279, 1993.
- ^abD. Aldous.Poisson Clumping Heuristic.Wiley Online Library, 1989.
- ^A. D. Barbour and T. C. Brown. Stein's method and point process approximation.Stochastic Processes and their Applications,43(1):9–31, 1992.
- ^D. Schuhmacher. Distance estimates for dependent superpositions of point processes.Stochastic processes and their applications,115(11):1819–1837, 2005.
- ^D. Schuhmacher. Distance estimates for poisson process approximations of dependent thinnings.Electronic Journal of Probability,10:165–201, 2005.
- ^abcD.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. pp. 131–132.ISBN978-0-387-21337-8.
- ^D.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. p. 146.ISBN978-0-387-21337-8.
- ^Caleb Bastian, Gregory Rempala. Throwing stones and collecting bones: Looking for Poisson-like random measures, Mathematical Methods in the Applied Sciences, 2020.doi:10.1002/mma.6224
- ^Olav Kallenberg (1983).Random measures.Akademie-Verlag.ISBN978-0-12-394960-8.
- ^J. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. pp. 79–84.ISBN978-0-19-159124-2.
- ^D.J. Daley; David Vere-Jones (12 November 2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer Science & Business Media. pp. 368–413.ISBN978-0-387-21337-8.
- ^A. E. Gelfand, P. Diggle, P. Guttorp, and M. Fuentes.Handbook of spatial statistics,Chapter 9. CRC press, 2010.
- ^O. Kallenberg.Random measures.Academic Pr, 1983.
- ^J. Møller, A. R. Syversveen, and R. P. Waagepetersen. Log Gaussian Cox Processes.Scandinavian journal of statistics,25(3):451–482, 1998.
- ^J. Møller and R. P. Waagepetersen. Modern statistics for spatial point processes.Scandinavian Journal of Statistics,34(4):643–684, 2007.
- ^Jesper Moller; Rasmus Plenge Waagepetersen (25 September 2003).Statistical Inference and Simulation for Spatial Point Processes.CRC Press. p. 8.ISBN978-0-203-49693-0.
- ^Martin Haenggi (2013).Stochastic Geometry for Wireless Networks.Cambridge University Press. pp. 138–140.ISBN978-1-107-01469-5.
- ^A. Baddeley; I. Bárány; R. Schneider (26 October 2006).Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004.Springer. pp. 19–21.ISBN978-3-540-38175-4.
- ^abJ. F. C. Kingman (17 December 1992).Poisson Processes.Clarendon Press. p. 55.ISBN978-0-19-159124-2.
- ^François Baccelli; Bartlomiej Blaszczyszyn (2009).Stochastic Geometry and Wireless Networks.Now Publishers Inc. pp. 291–293.ISBN978-1-60198-264-3.
- ^Roy L. Streit (15 September 2010).Poisson Point Processes: Imaging, Tracking, and Sensing.Springer Science & Business Media. pp. 205–206.ISBN978-1-4419-6923-1.
- ^Daley & Vere-Jones (2003),pp. 198–199.
- ^Daley, Daryl J.; Vere-Jones, David (2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer. p. 198.ISBN978-0387213378.
- ^David Applebaum (5 July 2004).Lévy Processes and Stochastic Calculus.Cambridge University Press. pp. 46–47.ISBN978-0-521-83263-2.
- ^Wu, S. (2019).A failure process model with the exponential smoothing of intensity functions.European Journal of Operational Research,275(2), 502–513
General
[edit]Books
[edit]- A. Baddeley; I. Bárány; R. Schneider (26 October 2006).Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004.Springer.ISBN978-3-540-38175-4.
- Cox, D. R.;Isham, Valerie(1980).Point Processes.Chapman & Hall.ISBN978-0-412-21910-8.
- Daley, Daryl J.; Vere-Jones, David (2003).An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods.Springer.ISBN978-1475781090.
- Daley, Daryl J.; Vere-Jones, David (2007).An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure.Springer.ISBN978-0387213378.
- Kingman, John Frank(1992).Poisson processes.Clarendon Press.ISBN978-0198536932.
- Moller, Jesper; Waagepetersen, Rasmus P. (2003).Statistical Inference and Simulation for Spatial Point Processes.CRC Press.ISBN978-1584882657.
- Ross, S. M. (1996).Stochastic Processes.Wiley.ISBN978-0-471-12062-9.
- Snyder, D. L.; Miller, M. I. (1991).Random Point Processes in Time and Space.Springer-Verlag.ISBN978-0-387-97577-1.
- Stoyan, Dietrich; Kendall, Wilfred S.; Mecke, Joseph (1995).Stochastic geometry and its applications.Wiley.ISBN978-0471950998.
- Streit, Streit (2010).Poisson Point Processes: Imaging, Tracking, and Sensing.Springer Science& Business Media.ISBN978-1441969224.
- H. C. Tijms (18 April 2003).A First Course in Stochastic Models.John Wiley & Sons. pp. 22–23.ISBN978-0-471-49880-3.
Articles
[edit]- Stirzaker, David (2000). "Advice to hedgehogs, or, constants can vary".The Mathematical Gazette.
- Guttorp, Peter; Thorarinsdottir, Thordis L. (2012). "What happened to discrete chaos, the Quenouille process, and the sharp Markov property? Some history of stochastic point processes".International Statistical Review.