Jump to content

Fourier inversion theorem

From Wikipedia, the free encyclopedia
(Redirected fromInverse Fourier transform)

Inmathematics,theFourier inversion theoremsays that for many types of functions it is possible to recover a function from itsFourier transform.Intuitively it may be viewed as the statement that if we know allfrequencyandphaseinformation about a wave then we may reconstruct the original wave precisely.

The theorem says that if we have a functionsatisfying certain conditions, and we use theconvention for the Fourier transformthat

then

In other words, the theorem says that

This last equation is called theFourier integral theorem.

Another way to state the theorem is that ifis the flip operator i.e.,then

The theorem holds if bothand its Fourier transform areabsolutely integrable(in theLebesgue sense) andis continuous at the point.However, even under more general conditions versions of the Fourier inversion theorem hold. In these cases the integrals above may not converge in an ordinary sense.

Statement

[edit]

In this section we assume thatis an integrable continuous function. Use theconvention for the Fourier transformthat

Furthermore, we assume that the Fourier transform is also integrable.

Inverse Fourier transform as an integral

[edit]

The most common statement of the Fourier inversion theorem is to state the inverse transform as an integral. For any integrable functionand allset

Then for allwe have

Fourier integral theorem

[edit]

The theorem can be restated as

By taking the real part[1]of each side of the above we obtain

Inverse transform in terms of flip operator

[edit]

For any functiondefine the flip operator[note 1]by

Then we may instead define

It is immediate from the definition of the Fourier transform and the flip operator that bothandmatch the integral definition of,and in particular are equal to each other and satisfy.

Sincewe haveand

Two-sided inverse

[edit]

The form of the Fourier inversion theorem stated above, as is common, is that

In other words,is a left inverse for the Fourier transform. However it is also a right inverse for the Fourier transform i.e.

Sinceis so similar to,this follows very easily from the Fourier inversion theorem (changing variables):

Alternatively, this can be seen from the relation betweenand the flip operator and theassociativityoffunction composition,since

Conditions on the function

[edit]

When used in physics and engineering, the Fourier inversion theorem is often used under the assumption that everything "behaves nicely". In mathematics such heuristic arguments are not permitted, and the Fourier inversion theorem includes an explicit specification of what class of functions is being allowed. However, there is no "best" class of functions to consider so several variants of the Fourier inversion theorem exist, albeit with compatible conclusions.

Schwartz functions

[edit]

The Fourier inversion theorem holds for allSchwartz functions(roughly speaking, smooth functions that decay quickly and whose derivatives all decay quickly). This condition has the benefit that it is an elementary direct statement about the function (as opposed to imposing a condition on its Fourier transform), and the integral that defines the Fourier transform and its inverse are absolutely integrable. This version of the theorem is used in the proof of the Fourier inversion theorem for tempered distributions (see below).

Integrable functions with integrable Fourier transform

[edit]

The Fourier inversion theorem holds for all continuous functions that are absolutely integrable (i.e.) with absolutely integrable Fourier transform. This includes all Schwartz functions, so is a strictly stronger form of the theorem than the previous one mentioned. This condition is the one used above in thestatement section.

A slight variant is to drop the condition that the functionbe continuous but still require that it and its Fourier transform be absolutely integrable. Thenalmost everywherewheregis a continuous function, andfor every.

Integrable functions in one dimension

[edit]
Piecewise smooth; one dimension

If the function is absolutely integrable in one dimension (i.e.) and is piecewise smooth then a version of the Fourier inversion theorem holds. In this case we define

Then for all

i.e.equals the average of the left and right limits ofat.At points whereis continuous this simply equals.

A higher-dimensional analogue of this form of the theorem also holds, but according to Folland (1992) is "rather delicate and not terribly useful".

Piecewise continuous; one dimension

If the function is absolutely integrable in one dimension (i.e.) but merely piecewise continuous then a version of the Fourier inversion theorem still holds. In this case the integral in the inverse Fourier transform is defined with the aid of a smooth rather than a sharp cut off function; specifically we define

The conclusion of the theorem is then the same as for the piecewise smooth case discussed above.

Continuous; any number of dimensions

Ifis continuous and absolutely integrable onthen the Fourier inversion theorem still holds so long as we again define the inverse transform with a smooth cut off function i.e.

The conclusion is now simply that for all

No regularity condition; any number of dimensions

If we drop all assumptions about the (piecewise) continuity ofand assume merely that it is absolutely integrable, then a version of the theorem still holds. The inverse transform is again defined with the smooth cut off, but with the conclusion that

foralmost every[2]

Square integrable functions

[edit]

In this case the Fourier transform cannot be defined directly as an integral since it may not be absolutely convergent, so it is instead defined by a density argument (see theFourier transform article). For example, putting

we can setwhere the limit is taken in the-norm. The inverse transform may be defined by density in the same way or by defining it in terms of the Fourier transform and the flip operator. We then have

in themean squared norm.In one dimension (and one dimension only), it can also be shown that it converges foralmost everyx∈ℝ- this isCarleson's theorem,but is much harder to prove than convergence in the mean squared norm.

Tempered distributions

[edit]

The Fourier transformmay be defined on the space of tempered distributionsby duality of the Fourier transform on the space of Schwartz functions. Specifically forand for all test functionswe set

whereis defined using the integral formula. Ifthen this agrees with the usual definition. We may define the inverse transform,either by duality from the inverse transform on Schwartz functions in the same way, or by defining it in terms of the flip operator (where the flip operator is defined by duality). We then have

Relation to Fourier series

[edit]

The Fourier inversion theorem is analogous to theconvergence of Fourier series.In the Fourier transform case we have

In the Fourier series case we instead have

In particular, in one dimensionand the sum runs fromto.

Applications

[edit]
Some problems, such as certain differential equations, become easier to solve when the Fourier transform is applied. In that case the solution to the original problem is recovered using the inverse Fourier transform.

Inapplications of the Fourier transformthe Fourier inversion theorem often plays a critical role. In many situations the basic strategy is to apply the Fourier transform, perform some operation or simplification, and then apply the inverse Fourier transform.

More abstractly, the Fourier inversion theorem is a statement about the Fourier transform as anoperator(seeFourier transform on function spaces). For example, the Fourier inversion theorem onshows that the Fourier transform is a unitary operator on.

Properties of inverse transform

[edit]

The inverse Fourier transform is extremely similar to the original Fourier transform: as discussed above, it differs only in the application of a flip operator. For this reason theproperties of the Fourier transformhold for the inverse Fourier transform, such as theConvolution theoremand theRiemann–Lebesgue lemma.

Tables of Fourier transformsmay easily be used for the inverse Fourier transform by composing the looked-up function with the flip operator. For example, looking up the Fourier transform of the rect function we see that so the corresponding fact for the inverse transform is

Proof

[edit]

The proof uses a few facts, givenand.

  1. Ifand,then.
  2. Ifand,then.
  3. For,Fubini's theoremimplies that.
  4. Define;then.
  5. Define.Then withdenotingconvolution,is anapproximation to the identity:for any continuousand point,(where the convergence is pointwise).

Since, by assumption,,then it follows by thedominated convergence theoremthat

Define.Applying facts 1, 2 and 4, repeatedly for multiple integrals if necessary, we obtain

Using fact 3 onand,for each,we have

the convolution ofwith an approximate identity. But since,fact 5 says that

Putting together the above we have shown that

Notes

[edit]
  1. ^Anoperatoris a transformation that maps functions to functions. The flip operator, the Fourier transform, the inverse Fourier transform and the identity transform are all examples of operators.

References

[edit]
  • Folland, G. B.(1992).Fourier Analysis and its Applications.Belmont, CA, USA: Wadsworth.ISBN0-534-17094-3.
  • Folland, G. B.(1995).Introduction to Partial Differential Equations(2nd ed.). Princeton, USA: Princeton Univ. Press.ISBN978-0-691-04361-6.
  1. ^w.l.o.gfis real valued, as any complex-valued function can be split into its real and imaginary parts and every operator appearing here is linear inf.
  2. ^"DMat0101, Notes 3: The Fourier transform on L^1".I Woke Up In A Strange Place.2011-03-10.Retrieved2018-02-12.