Jump to content

List of multiplanetary systems

From Wikipedia, the free encyclopedia
(Redirected fromKepler-164)
Number of extrasolar planet discoveries per year through 2023. Colors indicate method of detection.

From the total of 4,949 stars known to haveexoplanets(as of July 24, 2024), there are a total of 1007 known multiplanetary systems,[1]or stars with at least two confirmed planets, beyond theSolar System.This list includes systems with at least three confirmed planets or two confirmed planets where additional candidates have been proposed. The stars with the most confirmed planets are theSun(the Solar System's star) andKepler-90,with 8 confirmed planets each, followed byTRAPPIST-1with 7 planets.

The 1007 multiplanetary systems are listed below according to the star's distance from Earth. Proxima Centauri, the closest star to the Solar System, has three planets (b,candd). The nearest system with four or more confirmed planets isGliese 876,with four known.[citation needed][a]The farthest confirmed multiplanetary system isOGLE-2012-BLG-0026L,at 13,300 light-years (4,100 pc) away.[3]

The table below contains information about the coordinates, spectral and physical properties, and the number of confirmed (unconfirmed) planets for systems with at least 2 planets and 1 not confirmed. The two most importantstellar propertiesaremassandmetallicitybecause they determine how theseplanetary systemsform. Systems with higher mass and metallicity tend to have more planets and more massive planets. However, although low metallicity stars tend to have fewer massive planets, particularly hot-Jupiters, they also tend to have a larger number of close-in planets, orbiting at less than 1 AU.[4]

Multiplanetary systems

[edit]
Color indicates number of planets
2 (x) 3 4 5 6 7 8 9
Star
Constellation
Right
ascension

Declination
Apparent
magnitude

Distance(ly)
Spectral
type

Mass
(M)
Temperature(K)
Age
(Gyr)
Confirmed
(unconfirmed)
planets
Notes
Sun - - −26.74 0.000016 G2V 1 5778 4.572 8 (1) The hypothesisedPlanet Nineremains unconfirmed.
Proxima Centauri Centaurus 14h29m42.94853s −62° 40′ 46.1631″ 10.43 to 11.11[5] 4.244 M5.5Ve[6] 0.122 3042 4.85 2 (1) Closest star to the Sun and closest star to the Sun with a multiplanetary system. Planet b is potentially habitable.[7][8]Planet c initially appeared likely but has since been disputed.[9]
Lalande 21185 Ursa Major 11h03m20.1940s +35° 58′ 11.5682″ 7.520[10] 8.3044±0.0007 M2V 0.39 3601±51 8.047 2 (1) Brightestred dwarfstar in the northern celestial hemisphere.[11][12]
Lacaille 9352 Piscis Austrinus 23h05m52.04s −35° 51′ 11.05″ 7.34 10.721 M0.5V 0.486 3688±86 4.57 2 (1) The unconfirmed planet d is potentially habitable.[13]
Luyten's Star Canis Minor 07h27m24.4991s 05° 13′ 32.827″ 9.872 11.20 M3.5V 0.26 3150 unknown 2 (2) Stellar activity level and rotational rate suggest an age higher than 8 billion years.[14]Planet b is potentially habitable.[15]
YZ Ceti Cetus 01h12m30.64s −16° 59′ 56.3″ 12.07 11.74 M4.5V 0.13 3056 4 3 (1) Flare star.[16]
Gliese 1061 Horologium 03h35m59.69s −44° 30′ 45.3″ 13.03 12.04 M5.5V 0.113 2953 unknown 3 Planets c and d are potentially habitable.[17]
Teegarden's Star Aries 02h53m00.89s +16° 52′ 53″ 15.13 12.497 M7V 0.097 3034 8 3 Teegarden's Star b and Teegarden's Star c are likely Earth-mass planets that orbit in the habitable zone.[18]
Wolf 1061 Ophiuchus 16h30m18.0584s −12° 39′ 45.325″ 10.07 14.050 ± 0.002 M3.5V 0.294 3342 unknown 3 Planet c is potentially habitable.[19][20][21]
Gliese 876 Aquarius 22h53m16.73s −14° 15′ 49.3″ 10.17 15.25 M4V 0.334 3348 4.893 4 Planet b is a gas giant which orbits in the habitable zone.[22]
82 G. Eridani Eridanus 03h19m55.65s −43° 04′ 11.2″ 4.254 19.71 G8V 0.7 5401 5.76 3 (3) This star also has a dust disk[23]with a semi-major axis at approximately 19 AU.[24]
Gliese 581 Libra 15h19m26.83s −07° 43′ 20.2″ 10.56 20.56 M3V 0.311 3484 4.326 3 (1) The disputed planet d is potentially habitable.[25]
Gliese 667 C Scorpius 17h18m57.16s −34° 59′ 23.14″ 10.20 21 M1.5V 0.31 3700 2 2 (1) Triple star system - all exoplanets orbit around Star C. Planet c is potentially habitable, and there are more unconfirmed planets.[26][27][28]
HD 219134 Cassiopeia 23h13m14.74s 57° 10′ 03.5″ 5.57 21 K3Vvar 0.794 4699 12.66 6 Closest star to the Sun with exactly six[29]exoplanets, and closestK-type main sequence starto the Sun with a multiplanetary system. One of the oldest stars with a multiplanetary system, although it is still more metal-rich than the Sun. None of the known planets is in the habitable zone.[30]
61 Virginis Virgo 13h18m24.31s −18° 18′ 40.3″ 4.74 28 G5V 0.954 5531 8.96 2 (1) Planet d remains unconfirmed,[31]and a 2021 study found that it was likely a false positive.[32]61 Virginis also has a debris disk.
Gliese 433 Hydra 11h35m26.9485s −25° 10′ 08.9″ 9.79 29.8±0.1 M1.5V 0.48 3550±100 unknown 3 Aninfrared excessaround this star suggests acircumstellar disk.[33]
Gliese 357 Hydra 09h36m01.6373s −21° 39′ 38.878″ 10.906 30.776 M2.5V 0.362 3488 unknown 3 Planet d is a potentially habitable Super-Earth.[34][35][36][37]
L 98-59 Volans 08h18m07.62s −68° 18′ 46.8″ 11.69 34.6 M3V 0.312 3412 unknown 4 (1) The unconfirmed planet f orbits in the habitable zone.[38]
Gliese 414A Ursa Major 11h11m05.88s 30° 26′ 42.61″ 8.31 38.76 K7V 0.65 4120 12.4 2 (0) [39][40]
Gliese 806 Cygnus 20h45m04.099s +44° 29′ 56.6″ 10.79 39.3 M1.5V 0.423 3586 3 2 (1) -
TRAPPIST-1 Aquarius 23h06m29.283s −05° 02′ 28.59″ 18.80 39.5 M8V 0.089 2550 7.6 7 Planets d, e, f and g are potentially habitable. Only star known with exactly seven confirmed planets. All seven terrestrial planets lie within only 0.07 AU of the star.
55 Cancri Cancer 08h52m35.81s +28° 19′ 50.9″ 5.95 40 K0IV-V 1.026 5217 7.4 5 All five known planets orbit around star A (none are circumbinary or orbit around star B). Closest system with exactly five confirmed planets.
Gliese 180 Eridanus 04h53m49.9798s −17° 46′ 24.294″ 10.894 40.3 M2V[41]or M3V[42] 0.39 3562 unknown 3 The habitability of planets b and c is disputed.[43][44]
HD 69830 Puppis 08h18m23.95s −12° 37′ 55.8″ 5.95 41 K0V 0.856 5385 7.446 3 A debris disk exterior to the three exoplanets was detected by theSpitzer Space Telescopein 2005.[45]
HD 40307 Pictor 05h54m04.24s −60° 01′ 24.5″ 7.17 42 K2.5V 0.752 4977 1.198 4 (2) The existence of planets e and g are disputed.[46]If confirmed, planet g is potentially habitable.[47]
Upsilon Andromedae Andromeda 01h36m47.84s +41° 24′ 19.7″ 4.09 44 F8V 1.27 6107 3.781 3 NearestF-type main sequencestar with a multiplanetary system. Second-brightest star in the night sky with a multiplanetary system after7 Canis Majoris.All exoplanets orbit around star A in the binary system.
47 Ursae Majoris Ursa Major 10h59m27.97s +40° 25′ 48.9″ 5.10 46 G0V 1.029 5892 7.434 3 Planet Taphao Thong was discovered in 1996 and was one of the first exoplanets to be discovered.[48]The planet was the firstlong-periodextrasolar planet discovered. The other planets were discovered later.[49]
Nu2Lupi Lupus 15h21m49.57s −48° 19′ 01.1″ 5.65 47 G2V 0.906 5664 10.36 3 One of the oldest stars in the solar neighbourhood.[50][51][52]
LHS 1140 Cetus 00h44m59.31s −15° 16′ 16.7″ 14.18 48.9 M4.5V[53] 0.179 3216±39 5 2 (1) Planet b is a potentially habitable Super-Earth.[54]
Gliese 163 Dorado 04h09m16s −53° 22′ 25″ 11.8 49 M3.5V 0.4 unknown 3 5 Planet c is possibly a potentially habitable Super-Earth but is probably too hot or massive.[55][56]
Mu Arae Ara 17h44m08.70s −51° 50′ 02.6″ 5.15 51 G3IV-V 1.077 5704 6.413 4 Planet Quijote orbits in thecircumstellar habitable zone.However, it is agas giant,so it itself is uninhabitable although a large moon orbiting around it may behabitable.
GJ 3929 Corona Borealis 15h58m18.8s 35° 24′ 24.3″ 12.67 51.58 M3.5V 0.313 3384 unknown 2 (0) [57][58]
Gliese 676A Ara 17h30m11.2042s −51° 38′ 13.116″ 9.59 53 M0V 0.71 unknown unknown 4 Held the record for widest range of masses in a planetary system in 2012.[59]
HD 7924 Cassiopeia 01h21m59.12s +76° 42′ 37.0″ 7.19 55 K0V 0.832 5177 unknown 3 These planets may be potentially habitable Super-Earths.[60]
Pi Mensae Mensa 05h37m09.8851s −80° 28′ 08.8313″ 5.65 59.62±0.07 G0V 1.11 6013 3.4 3 Outer planet is likely abrown dwarf.[61]
Gliese 3293 Eridanus 04h28m35.72s −25° 10′ 08.9″ 11.96 59 M2.5V 0.42 3466±49 unknown 4 Planets b and d orbit in the habitable zone.[62]
LHS 1678 Caelum 04h32m43s −39° 47′ 21″ 12 64.8 M2V 0.345 3490 unknown 3 (0) [63]
HD 104067 Corvus 11h59m10.0s −20° 21′ 13.6″ 7.92 66.3 K3V 0.82 4942 4.8 2 (1) The innermost planet, which is unconfirmed, might suffer from significanttidal heating.[64]
HD 142 Phoenix 00h06m19.0s −49° 04′ 30″ 5.70 67 G1 IV 1.1 6180 5.93 3 -
HD 215152 Aquarius 22h43m21s −06° 24′ 03″ 8.13 70 G8IV 1.019 5646 7.32 4 A debris disk candidate as it has an infrared excess.[65]
HD 164922 Hercules 18h02m30.86s +26° 18′ 46.8″ 7.01 72 G9V[66] 0.874 5293 13.4 4 Oldest star with a multiplanetary system. Despite its age, it is more metal-rich than the Sun.[66]
HD 63433 Gemini 07h49m55.0s +27° 21′ 47.4″ 6.92 73 G5V 0.99 5640 0.4 3
HIP 57274 Ursa Major 11h44m41s +30° 57′ 33″ 8.96 85 K5V 0.73 4640 7.87 3 -
HD 39194 Mensa 05h44m32s −70° 08′ 37″ 8.08 86.2 K0V unknown 5205 unknown 3 The planets have eccentric orbits.[67]
LP 791-18 Crater 11h02m45.95s −16° 24′ 22.3″ 16.9 86.9 M6V/M7V 0.139 2960 0.5 3
HD 181433 Pavo 19h25m09.57s −66° 28′ 07.7″ 8.38 87 K5V 0.777 4962 8.974 3 -
HD 134606 Apus 15h15m15s −70° 31′ 11″ 6.85 87 G6IV unknown unknown unknown 5 The planets have moderately eccentric orbits.[68]
HD 158259 Draco 17h25m24.0s +52° 47′ 26″ 6.46 89 G0 1.08 unknown unknown 5 (1) A G-type star slightly more massive than the Sun.[69]Planet g remains unconfirmed.[69]
HD 82943 Hydra 09h34m50.74s −12° 07′ 46.4″ 6.54 90 F9V Fe+0.5[70] 1.175 5874 3.08 3 Planets b and c are in a 2:1 orbital resonance.[71]Planet b orbits in the habitable zone, but it and planet c are massive enough to bebrown dwarfs.HD 82943 has an unusuallithium-6abundance.[72]
Gliese 3138 Cetus 02h09m10.90s −16° 20′ 22.53″ 10.877 92.9 0.681 3717±49 unknown 3
GJ 9827 Pisces 23h27m04.84s −01° 17′ 10.59″ 10.10 96.8±0.2 K6V 0.593 4294±52 unknown 3 Also known as K2-135. Planet b is extremely dense, with at least half of its mass being iron.[73]
K2-239 Sextans 10h42m22.63s +04° 26′ 28.86″ 14.5 101.5 M3V 0.4 3420 unknown 3
TOI-700 Dorado 06h28m22.97s −65° 34′ 43.01″ 13.10 101.61 M2V 0.416 3480 1.5 4 Planets d and e are potentially habitable.[74][75][76]
HD 17926 Fornax 02h51m56.16s −30° 48′ 53.2″ 6.38 105 F6V 1.145 6201 unknown 3 The star has a red dwarf companion.[77]
HD 37124 Taurus 05h37m02.49s +20° 43′ 50.8″ 7.68 110 G4V 0.83 5606 3.327 3 Planet c orbits at the outer edge of the habitable zone.[78]
HD 20781 Fornax 03h20m03s −28° 47′ 02″ 8.44 115 G9.5V 0.7 5256±29 unknown 4 Located in binary star system.[79][80]
Kepler-444 Lyra 19h19m01s 41° 38′ 05″ 9.0 117 K0V 0.758 5040 11.23 5 Nearest multiplanetary system where the planets were discovered by theKepler space telescope.
HD 141399 Boötes 15h46m54.0s +46° 59′ 11″ 7.2 118 K0V 1.07 5600 unknown 4 Planet c orbits in the habitable zone.[81]
Kepler-42 Cygnus 19h28m53s +44° 37′ 10″ 16.12 126 M5V[82] 0.13 3068 unknown 3 -
HD 31527 Lepus 04h55m38s −23° 14′ 31″ 7.48 126 G0V unknown unknown unknown 3 -
HD 10180 Hydrus 01h37m53.58s −60° 30′ 41.5″ 7.33 127 G1V 1.055 5911 4.335 6 (3) Has three unconfirmed candidates. If these candidate exoplanets were confirmed, HD 10180 would have the largest planetary system of any star.[83]
HD 23472 Reticulum 03h41m50.3988s −62° 46′ 01.4772″ 9.72 127.48 K3.5V 0.67 4684±99 unknown 5
HR 8799 Pegasus 23h07m28.72s +21° 08′ 03.3″ 5.96 129 A5V 1.472 7429 0.064 4 OnlyA-type main sequence starwith a multiplanetary system, and hottest and most massive single main sequence star with a multiplanetary system. All four planets are massivesuper-Jupiters.
HD 27894 Reticulum 04h20m47.05s −59° 24′ 39.0″ 9.42 138 K2V 0.8 4875 3.9 3 -
HD 93385 Vela 10h46m15.1160s −41° 27′ 51.7261″ 7.486 141.6 G2V 1.07 5823 4.13 3
K2-3 Leo 11h29m20.3918s −01° 27′ 17.280″ 12.168 143.9±0.4 M0V 0.601 3835±70 1 3 The outermost planet orbits in the habitable zone.[84]
HD 34445 Orion 05h17m41.0s +07° 21′ 12″ 7.31 152 G0V 1.07 5836 8.5 1 (5) Some planets were not detected or inferred to be false positives in a later study.[85]
HD 204313 Capricornus 21h28m12.21s –21° 43′ 34.5″ 7.99 154 G5V 1.045 5767 3.38 3 -
HD 3167 Pisces 00h34m57.5s +04° 22′ 53″ 8.97 154.4 K0V 0.852 5300 10.2 4 -
HIP 34269 Puppis 07h06m13.98s −47° 35′ 13.87″ 10.59 154.81 0.74 4440±100 unknown 4
HD 133131 Libra 15h03m35.80651s −27° 50′ 27.5520″ 8.4 168 G2V+G2V[86] 0.95 5799±19 6 3 2 planets around primary, and 1 planet around secondary star.[86]
K2-136[ru] Taurus 04h29m38.99s +22° 52′ 57.80″ 11.2 173 K5V 0.71 4364±70 0.7 3
HIP 14810 Aries 03h11m14.23s +21° 05′ 50.5″ 8.51 174 G5V 0.989 5485 5.271 3 -
HD 191939 Draco 20h08m05.75s +66° 51′ 2.1″ 8.971 175 G9V 0.81 5348 8.7 6 [87]
HD 125612 Virgo 14h20m53.51s −17° 28′ 53.5″ 8.33 177 G3V 1.099 5897 2.15 3 -
HD 184010 Vulpecula 19h31m22.0s +26° 37′ 02″ 5.9 200 KOIII-IV 1.35 4971 2.76 3 -
HD 109271 Virgo 12h33m36.0s −11° 37′ 19″ 8.05 202 G5 1.047 5783 7.3 2 (1) -
HD 38677 Orion 05h47m06.0s −10° 37′ 49″″ 8.0 202 F8V 1.21 6196.0 2.01 4 -
TOI-178 Sculptor 00h29m12.30s 30° 27′ 13.46″ 11.95 205.16 K7V[88] 0.65 4316±70 7.1 6 The planets are in anorbital resonance.[88]
HD 108236 Centaurus 12h26m17.89s −51° 21′ 46.21″ 9.24 211 G3V 0.97 5730 5.8 5 -
Kepler-37 Lyra 18h58m23.1s 44° 31′ 05″ 9.77 215 G8V 0.803 5417 6 3 (1) The existence of Kepler-37e is dubious.[89]
K2-72 Aquarius 22h18m29.2548s −09° 36′ 44.3824″ 15.04 217 M2V 0.27 3497 unknown 4 2 planets in habitable zone
Kepler-138 Lyra 19h21m32.0s +43° 17′ 35″ 13.5 218.5 M1V 0.57 3871 unknown 3 (1)
K2-233 Libra 15h21m55.2s −20° 13′ 54″ 10.0 221 K3 0.8 4950 0.36 3
TOI-1260 Ursa Major 10h28m35.03s +65° 51′ 16.38″ 11.973 239.5 0.66 4227±85 6.7 3
LP 358-499 Taurus 04h40m35.64s +25° 00′ 36.05″ 13.996 245.3 0.46 3655±80 unknown 4 Also known as K2-133
K2-266 Sextans 10h31m44.5s +00° 56′ 15″ 252 K 0.69 4285 8.4 4 (2)
K2-155 Taurus 04h21m52.5s +21° 21′ 13″ 12.8 267 K7 0.65 4258 unknown 3
K2-384 Cetus 01h21m59.86s 00° 45′ 04.41″ 16.12 270 M?V 0.33 3623±138 unknown 5
TOI-1136 Draco 12h48m44.38s +64° 51′ 18.99″ 9.534 275.8 1.022 5770±50 0.7 6 (1)
TOI-561 Sextans 09h52m44.44s +06° 12′ 57.97″ 10.252 279 G9V 0.785 5455 5 4 (1) -
Kepler-445 Cygnus 19h54m57.0s +46° 29′ 55″ 18 294 0.18 3157 unknown 3 -
TOI-763 Centaurus 12h57m52.45s −39° 45′ 27.71″ 10.156 311 0.917 5444 6.2 2 (1) -
K2-229 Virgo 12h27m29.5848s −06° 43′ 18.7660″ 10.985 335 K2V 0.837 5185 5.4 3
Kepler-102 Lyra 18h45m55.9s +47° 12′ 29″ 11.492 340 K3V[90] 0.81 4809 1.41 5
V1298 Tauri Taurus 04h05m19.5912s +20° 09′ 25.5635″ 10.31 354 K0-1.5[91] 1.101 4970 0.023 4 This star is a youngT Tauri variable.[92]
K2-302 Aquarius 22h20m22.7764s −09° 30′ 34.2934″ 11.98 359.3 unknown 3297±73 unknown 3
K2-198 Virgo 13h15m22.5s −06° 27′ 54″ 11.0 362 0.8 5213 unknown 3
TOI-125 Hydrus 01h34m22.73s −66° 40′ 32.95″ 11.02 363 0.859 5320 unknown 3 (2)
HIP 41378 Cancer 08h26m28.0s +10° 04′ 49″ 8.9 378 F8 1.15 6199 unknown 5 (2) Planet f has an unusually low density, and might have rings or an extended atmosphere.[93][94]More planets are still suspected.[95]
Kepler-446 Lyra 18h49m00.0s +44° 55′ 16″ 16.5 391 M4V 0.22 3359 unknown 3 -
HD 33142 Lepus 05h07m35.54s −13° 59′ 11.34″ 7.96 394.3 1.52 5025+24
−16
unknown 3 Host star is a giant star with spectral type of K0III.[96]
K2-148 Cetus 00h58m04.28s −00° 11′ 35.36″ 13.05 407 K7V 0.65 4079±70 unknown 3 A secondary red dwarf is gravitationally bound to K2-148.[97]
Kepler-68 Cygnus 19h24m07.76s +49° 02′ 25.0″ 8.588 440 G1V 1.079 5793 6.3 3 (1) Planet d, the outermost confirmed planet, is a Jupiter-sized planet which orbits in the habitable zone.[98]Radial velocity measurements discovered an additional signal, which could be a fourth planet or a stellar companion.[99]
HD 28109 Hydrus 04h20m57.13s −68° 06′ 09.51″ 9.38 457 1.26 6120±50 unknown 3
COROT-7 Monoceros 06h43m49.47s −01° 03′ 46.9″ 11.73 489 K0V 0.93 5275 1.5 3
XO-2 Lynx 07h48m07.4814s +50° 13′ 03.2578″ 11.18 496±3 K0V+K0V unknown unknown 6.3 4 Binary with each star orbited by two planets.[100][101]
Kepler-411 Cygnus 19h10m25.3s +49° 31′ 24″ 12.5 499.4 K3V 0.83 4974 unknown 5
K2-381 Sagittarius 19h12m06.46s −21° 00′ 27.51″ 13.01 505 K2 0.754 4473±138 unknown 3
K2-285 Pisces 23h17m32.2s +01° 18′ 01″ 12.03 508 K2V 0.83 4975 unknown 4
K2-32 Ophiuchus 16h49m42.2602s −19° 32′ 34.151″ 12.31 510 G9V 0.856 5275 7.9 4 The planets are likely in a 1:2:5:7 orbital resonance.[102]
TOI-1246 Draco 16h44m27.96s 70° 25′ 46.70″ 11.6 558 1.12 5217±50 unknown 4
K2-352 Cancer 09h21m46.8434s +18° 28′ 10.34710″ 11.12 577 G2V 0.98 5791 unknown 3
Kepler-398 Lyra 19h25m52.5s +40° 20′ 38″ 578 K5V 0.72 4493 unknown 3
Kepler-186 Cygnus 19h54m36.6s +43° 57′ 18″ 15.29[103] 579.23[104] M1V[105] 0.478 3788 unknown 5 Planet f is the first Earth-size exoplanet discovered that orbits in the habitable zone.[106]
K2-37 Scorpius 16h13m48.2445s −24° 47′ 13.4279″ 12.52 590 G3V 0.9 5413 unknown 3
K2-58 Aquarius 22h15m17.2364s −14° 02′ 59.3151″ 12.13 596 K2V 0.89 5038 unknown 3
K2-138 Aquarius 23h15m47.77s −10° 50′ 58.91″ 12.21 597±55 K1V 0.93 5378±60 2.3 6 Planet g was not fully verified, or could be two long-period planets instead.[107]
K2-38 Scorpius 16h00m08.06s −23° 11′ 21.33″ 11.34 630 G3V 1.03 5731±66 unknown 2 (1) Dust disk in system
WASP-47 Aquarius 22h04m49.0s −12° 01′ 08″ 11.9 652 G9V 1.084 5400 unknown 4 One planet is a gas giant which orbits in the habitable zone.[108][109]WASP-47 is the only planetary system known to have both planets near thehot Jupiterand another planet much further out.[110]
K2-368 Aquarius 22h10m32.58s −11° 09′ 58.02″ 13.54 674 K3 0.746 4663±138 unknown 3 (1)
HAT-P-13 Ursa Major 08h39m31.81s +47° 21′ 07.3″ 10.62 698 G4 1.22 5638 5 2 (1) -
Kepler-19 Cygnus 19h21m41s +37° 51′ 06″ 15.178 717 G 0.936 5541 1.9 3 System consists of a thick-envelope Super-Earth and two Neptune-mass planets.[111]
Kepler-296 Lyra 19h06m09.6s +49° 26′ 14.4″ 12.6 737.113 K7V + M1V[112] unknown 4249 unknown 5 All planets orbit around the primary star.[113]Planets e and f are potentially habitable.[113]
Kepler-454 Lyra 19h09m55.0s +38° 13′ 44″ 11.57 753 G 1.028 5687 5.25 3
Kepler-25 Lyra 19h06m33.0s +39° 29′ 16″ 11 799 F[114] 1.22 6190 unknown 3 Two planets were discovered by transit-timing variations,[115]and the third planet was discovered by follow-up radial velocity measurements.[116]
Kepler-114 Cygnus 19h36m29.0s +48° 20′ 58″ 13.7 846 K 0.71 4450 unknown 3
Kepler-54 Cygnus 19h39m06.0s +43° 03′ 23″ 16.3 886 M 0.52 3705 unknown 3
Kepler-20 Lyra 19h10m47.524s 42° 20′ 19.30″ 12.51 950 G8V 0.912 5466 8.8 6 Planets e and f were the first Earth-sized planets to be discovered.[117]
K2-19 Virgo 11h39m50.4804s +00° 36′ 12.8773″ 13.002 976 K0V[118]or G9V[119] 0.918 5250±70 8 3 -
PSR B1257+12 Virgo 13h00m03.58s +12° 40′ 56.5″ 24.31 980 pulsar 1.444 28856 0.797 3 Only pulsar with a multiplanetary system, and first exoplanets and multiplanetary system to be confirmed.[120][121]Star with dimmest apparent magnitude to have a multiplanetary system.
Kepler-62 Lyra 18h52m51.060s +45° 20′ 59.507″ 13.75[122] 990 K2V[122] 0.69 4925 7 5 Planets e and f orbit in the habitable zone.[122][123]
Kepler-48 Cygnus 19h56m33.41s +40° 56′ 56.47″ 13.04 1000 K 0.88 5190 unknown 5
Kepler-100 Lyra 19h25m32.6s +41° 59′ 24″ 1011 G1IV 1.109 5825 6.5 4
Kepler-49 Cygnus 19h29m11.0s +40° 35′ 30″ 15.5 1015 K 0.55 3974 unknown 4
Kepler-65 Lyra 19h14m45.3s +41° 09′ 04.2″ 11.018 1019 F6IV 1.199 6211 unknown 4 -
Kepler-52 Draco 19h06m57.0s +49° 58′ 33″ 15.5 1049 K 0.58 4075 unknown 3
K2-314 Libra 15h13m00.0s −16° 43′ 29″ 11.4 1059 G8IV/V 1.05 5430 9 3
K2-219 Pisces 00h51m22.9s +08° 52′ 04″ 12.09 1071 G2 1.02 5753±50 unknown 3
K2-268 Cancer 08h54m50.2862s +11° 50′ 53.7745″ 13.85 1079 unknown unknown unknown 5
K2-183 Cancer 08h20m01.7184s 14° 01′ 10.0711″ 12.85 1083 unknown 5482±50 unknown 3
K2-187 Cancer 08h50m05.6682s 23° 11′ 33.3712″ 12.864 1090 G?V 0.967 5438±63 unknown 4
Kepler-1542 Lyra 19h02m54.8s +42° 39′ 16″ 1096 G5V 0.94 5564 unknown 4 -
Kepler-26 Lyra 18h59m46s +46° 34′ 00″ 16 1100 M0V 0.65 4500 unknown 4 Transiting exoplanets[124]which are low-density planets below the size ofNeptune.[125][126]
Kepler-167 Cygnus 19h30m38.0s +38° 20′ 43″ 1119 ± 6 0.76 4796 unknown 4
Kepler-81 Cygnus 19h34m32.9s +42° 49′ 30″ 15.56 1136 K?V 0.648 4391 unknown 3
Kepler-132 Lyra 18h52m56.6s +41° 20′ 35″ 1140 F9 0.98 6003 unknown 4
Kepler-80 Cygnus 19h44m27.0s +39° 58′ 44″ 14.804 1218 M0V[127] 0.73 4250 unknown 6 Red dwarf star with six confirmed planets.[128][129]Five of them are in anorbital resonance.[130][129]
Kepler-159 Cygnus 19h48m16.8s +40° 52′ 08″ 1219 K 0.63 4625 unknown 2 (1) Star has a very low metallicity.
K2-299 Aquarius 22h05m06.5342s −14° 07′ 18.0135″ 13.12 1220 unknown 5724±72 unknown 3
Kepler-88 Lyra 19h24m35.5431s +40° 40′ 09.8098″ 13.5 1243 G8IV 1.022 5513±67 2.45 3
Kepler-174 Lyra 19h09m45.4s +43° 49:56′ 1269 K unknown 4880 unknown 3 Planet d may orbit in the habitable zone.
Kepler-32 Cygnus 19h51m22.0s +46° 34′ 27″ 16 1301.1 M1V 0.58 3900 unknown 3 (2) -
Kepler-83 Lyra 18h48m55.8s +43° 39′ 56″ 16.51 1306 K7V 0.664 4164 unknown 3
TOI-1338 Pictor 06h08m31.97s +59° 32′ 28.1″ 11.72 1318 F8
M
1.127 6160 4.4 2 (0)
Kepler-271 Lyra 18h52m00.7s +44° 17′ 03″ 1319 G7V 0.9 5524 unknown 3 Metal-poor star
Kepler-169 19h03m60.0s +40° 55:10′ 12.186 1326 K2V 0.86 4997 unknown 5
Kepler-451 Cygnus 19h38m32.61s 46° 03′ 59.1″ 1340 sdB
M
0.6 29564 6 3 Three circumbinary planets orbit around the Kepler-451 binary pair.[131]
Kepler-304 Cygnus 19h37m46.0s +40° 33′ 27″ 1418 K 0.8 4731 unknown 4
Kepler-18 Cygnus 19h52m19.06s +44° 44′ 46.76″ 13.549 1430 G7V 0.97 5345 10 3
Kepler-106 Cygnus 20h03m27.4s +44° 20′ 15″ 12.882 1449 G1V 1 5858 4.83 4
Kepler-92 Lyra 19h16m21.0s +41° 33′ 47″ 11.6 1463 G1IV 1.209 5871 5.52 3
Kepler-450 Cygnus 19h41m56.8s +51° 00′ 49″ 11.684 1487 F 1.19 6152 unknown 3
Kepler-89 Cygnus 19h49m20.0s +41° 53′ 28″ 12.4 1580 F8V 1.25 6116 3.9 4 FarthestF-type main sequence starfrom the Sun with a multiplanetary system. One study found hints of additional planets orbiting Kepler-89.[132]
Kepler-1388 Lyra 18h53m20.6s +47° 10′ 28″ 1604 0.63 4098 unknown 4 -
K2-282 Pisces 00h53m43.6833s 07° 59′ 43.1397″ 14.04 1638 G?V 0.94 5499±109 unknown 3
Kepler-107 Cygnus 19h48m06.8s +48° 12′ 31″ 12.7 1714 G2V[133] 1.238 5851 4.29 4 -
Kepler-1047 Cygnus 19h14m35.1s +50° 47′ 20″ 1846 G2V 1.08 5754 unknown 3 -
Kepler-55 Lyra 19h00m40.0s +44° 01′ 35″ 16.3 1888 K 0.62 4362 unknown 5 Planet c may orbit in the inner habitable zone.
Kepler-166 Cygnus 19h32m38.4s +48° 52′ 52″ 1968 G 0.88 5413 unknown 3
Kepler-11 Cygnus 19h48m27.62s +41° 54′ 32.9″ 13.69 2150±20 G6V[134] 0.954 5681 7.834 6 Farthest star from the Sun with exactly six exoplanets. First system discovered with six transiting planets.[134]The planets have low densities.[135]
Kepler-1254 Draco 19h34m59.3s +45° 06′ 26″ 2205 0.78 4985 unknown 3 -
Kepler-289 Cygnus 19h49m51.7s +42° 52′ 58″ 12.9 2283 G0V 1.08 5990 0.65 3 -
Kepler-85 Cygnus 19h23m54.0s +45° 17′ 25″ 15.0 2495 G 0.92 5666 unknown 4
Kepler-157 Lyra 19h24m23.3s +38° 52′ 32″ 2523 G2V 1.02 5774 unknown 3
Kepler-342 Cygnus 19h24m23.3s +38° 52′ 32″ 2549 F 1.13 6175 unknown 4
Kepler-148 Cygnus 19h19m08.7s +46° 51′ 32″ 2580 K?V 0.83 5019.0±122.0 unknown 3
Kepler-51 Cygnus 19h45m55.0s +49° 56′ 16″ 15.0 2610 G?V 1 5803 unknown 4 Super-puff planets with some of the lowest densities known.[136]
Kepler-403 Cygnus 19h19m41.1s +46° 44′ 40″ 2741 F9IV-V 1.25 6090 unknown 3
Kepler-9 Lyra 19h02m17.76s +38° 24′ 03.2″ 13.91 2754 G2V 0.998 5722 3.008 3 First multiplanetary system to be discovered by the Kepler Space Telescope.[137][138]
Kepler-23 Cygnus 19h36m52.0s +49° 28′ 45″ 14 2790 G5V 1.11 5760 unknown 3 -
Kepler-46 Cygnus 19h17m05.0s +42° 36′ 15″ 15.3 2795 K?V 0.902 5155 9.9 3 -
Kepler-305 Cygnus 19h56m53.83s +40° 20′ 35.46″ 15.812 2833 K 0.85 4918 unknown 3 (1)
Kepler-90 Draco 18h57m44.0s +49° 18′ 19″ 14.0 2840 ± 40 G0V 1.13 5930 2 8 All eight exoplanets are larger than Earth and are within 1.1 AU of the parent star. Only star apart from the Sun with at least eight planets.[139]AHill stabilitytest shows that the system is stable.[140]Planet h orbits in the habitable zone.
Kepler-150 Lyra 19h12m56.2s +40° 31′ 15″ 2906 G?V 0.97 5560 unknown 5 Planet f orbits in the habitable zone.
Kepler-82 Cygnus 19h31m29.61s +42° 57′ 58.09″ 15.158 2949 G?V 0.91 5512 unknown 4
Kepler-154 Cygnus 19h19m07.3s +49° 53′ 48″ 2985 G3V 0.98 5690 unknown 5
Kepler-56 Cygnus 19h35m02.0s +41° 52′ 19″ 13 3060 K?III 1.32 4840 3.5 3
Kepler-350 Lyra 19h01m41.0s +39° 42′ 22″ 13.8 3121 F 1.03 6215 unknown 3
Kepler-603 Cygnus 19h37m07.4s +42° 17′ 27″ 3134 G2V 1.01 5808 unknown 3 -
Kepler-160 Lyra 19h11m05.65s +42° 52′ 09.5″ 13.101 3140 G2V unknown 5470 unknown 3 (1) The unconfirmed planet Kepler-160e (or KOI-456.04) is a potentially habitable planet.[141]
Kepler-401 Cygnus 19h20m19.9s +50° 51′ 49″ 3149 F8V 1.17 6117 unknown 3
Kepler-58 Cygnus 19h45m26.0s +39° 06′ 55″ 15.3 3161 G1V 1.04 5843 unknown 3
Kepler-79 Cygnus 20h02m04.11s +44° 22′ 53.69″ 13.914 3329 F 1.17 6187 unknown 4
Kepler-60 Cygnus 19h15m50.70s +42° 15′ 54.04″ 13.959 3343 G 1.04 5915 unknown 3
Kepler-122 19h24m26.9s +39° 56′ 57″ 3351 F 1.08 6050 unknown 4
Kepler-279 Lyra 19h09m34.0s +42° 11′ 42″ 13.7 3383 F 1.1 6562 unknown 3
Kepler-255 Cygnus 19h44m15.4s +45° 58′ 37″ 3433 G6V 0.9 5573 unknown 3
Kepler-47 Cygnus 19h41m11.5s +46° 55′ 13.69″ 15.178 3442 G
M
1.043 5636(A)
(B is unknown)
4.5 3 Circumbinary planets, with one of the planets orbiting in the habitable zone.[142][143][144]
Kepler-292 19h43m03.84s +43° 25′ 27.4″ 13.97 3446 K0V 0.85 5299 unknown 5
Kepler-27 Cygnus 19h28m56.82s +41° 05′ 9.15″ 15.855 3500 G5V 0.65 5400 unknown 3
Kepler-351 Lyra 19h05m48.6s +42° 39′ 28″ 3535 G?V 0.89 5643 unknown 3
Kepler-276 Cygnus 19h34m16s +39° 02′ 11″ 15.368 3734 G?V 1.1 5812 unknown 3
Kepler-24 Lyra 19h21m39.18s +38° 20′ 37.51″ 14.925 3910 G1V 1.03 5800 unknown 4 -
Kepler-87 Cygnus 19h51m40.0s +46° 57′ 54″ 15 4021 G4IV 1.1 5600 7.5 2 (2) Farthest system from the Sun with an unconfirmed exoplanet candidate.
Kepler-33 Lyra 19h16m18.61s +46° 00′ 18.8″ 13.988 4090 G1IV 1.164 5849 4.27 5
Kepler-282 Lyra 18h58m43.0s +44° 47′ 51″ 15.2 4363 G?V 0.97 5876 unknown 4
Kepler-758 Cygnus 19h32m20.3s +41° 08′ 08″ 4413 1.16 6228 unknown 4 Farthest system from the Sun with exactly four confirmed exoplanets.
Kepler-53 Lyra 19h21m51.0s +40° 33′ 45″ 16 4455 G?V 0.98 5858 unknown 3
Kepler-30 Lyra 19h01m08.07s +38° 56′ 50.21″ 15.403 4560 G6V 0.99 5498 unknown 3
Kepler-84 Cygnus 19h53m00.49s +40° 29′ 45.87″ 14.764 4700 G3IV 1 5755 unknown 5
Kepler-385 Cygnus 19h37m21.23s +50° 20′ 11.55″ 15.76 4900 F8V 0.99 5835 unknown 3 (4)
Kepler-31 Cygnus 19h36m06.0s +45° 51′ 11″ 15.5 5429 F 1.21 6340 unknown 3 The three planets are in an orbital resonance.[145]
Kepler-238 Lyra 19h11m35s +40° 38′ 16″ 15.084 5867 G5IV 1.06 5614 unknown 5 One of the farthest systems from the Sun with a multiplanetary system, and the farthest system where exoplanets were discovered by theKepler space telescope.
Kepler-245 Cygnus 19h26m33.4s +42° 26′ 11″ 0.8 5100 unknown 4
Kepler-218 Cygnus 19h41m39.1s +46° 15′ 59″ unknown 5502 unknown 3
Kepler-217 Cygnus 19h32m09.1s +46° 16′ 39″ unknown 6171 unknown 3
Kepler-192 Lyra 19h11m40.3s +45° 35′ 34″ unknown 5479 unknown 3
Kepler-191 Cygnus 19h24m44.0s +45° 19′ 23″ 0.85 5282 unknown 3
Kepler-176 Cygnus 19h38m40.3s +43° 51′ 12″ unknown 5232 unknown 4
Kepler-431 Lyra 18h44m26.9s +43° 13′ 40″ 1.071 6004 unknown 3
Kepler-338 Lyra 18h51m54.9s +40° 47′ 04″ 1.1 5923 unknown 4
Kepler-197 Cygnus 19h40m54.3s +50° 33′ 32″ unknown 6004 unknown 4
Kepler-247 Lyra 19h14m34.2s +43° 02′ 21″ 0.884 5094 unknown 3
Kepler-104 Lyra 19h10m25.1s +42° 10′ 00″ 0.81 5711 unknown 3 -
Kepler-126 Cygnus 19h17m23.4s +44° 12′ 31″ unknown 6239 unknown 3 -
Kepler-127 Lyra 19h00m45.6s +46° 01′ 41″ unknown 6106 unknown 3 -
Kepler-130 Lyra 19h13m48.2s +40° 14′ 43″ 1 5884 unknown 3 -
Kepler-164 Lyra 19h11m07.4s +47° 37′ 48″ 1.11 5888 unknown 3 -
Kepler-171 Cygnus 19h47m05.3s +41° 45′ 20″ unknown 5642 unknown 3 -
Kepler-172 Lyra 19h47m05.3s +41° 45′ 20″ 0.86 5526 unknown 4 -
Kepler-149 Lyra 19h03m24.9s +38° 23′ 03″ unknown 5381 unknown 3
Kepler-142 Cygnus 19h40m28.5s +48° 28′ 53″ 0.99 5790 unknown 3
Kepler-124 Draco 19h07m00.7s +49° 03′ 54″ unknown 4984 unknown 3
Kepler-402 Lyra 19h13m28.9s +43° 21′ 17″ unknown 6090 unknown 4
Kepler-399 Cygnus 19h58m00.4s +40° 40′ 15″ unknown 5502 unknown 3
Kepler-374 Cygnus 19h36m33.1s +42° 22′ 14″ 0.84 5977 unknown 3
Kepler-372 Cygnus 19h25m01.5s +49° 15′ 32″ 1.15 6509 unknown 3
Kepler-363 Lyra 18h52m46.1s +41° 18′ 19″ 1.23 5593 unknown 3
Kepler-359 Cygnus 19h33m10.5s +42° 11′ 47″ 1.07 6248 unknown 3
Kepler-357 Cygnus 19h24m58.3s +44° 00′ 31″ 0.78 5036 unknown 3
Kepler-354 Lyra 19h03m00.4s +41° 20′ 08″ 0.65 4648 unknown 3
Kepler-206 Lyra 19h26m32.3s +41° 50′ 02″ 0.94 5764 unknown 3
Kepler-203 Cygnus 19h01m23.3s +41° 45′ 43″ 0.98 5821 unknown 3
Kepler-194 Cygnus 19h27m53.1s +47° 51′ 51″ unknown 6089 unknown 3
Kepler-184 Lyra 19h27m48.5s +43° 04′ 29″ unknown 5788 unknown 3
Kepler-178 Lyra 19h08m24.3s +46° 53′ 47″ unknown 5676 unknown 3
Kepler-336 Lyra 19h20m57.0s +41° 19′ 53″ 0.89 5867 unknown 3
Kepler-334 Lyra 19h08m33.8s +47° 06′ 55″ 1 5828 unknown 3
Kepler-332 Lyra 19h06m39.1s +47° 24′ 49″ 0.8 4955 unknown 3
Kepler-331 Lyra 19h27m20.2s +39° 18′ 26″ 0.51 4347 unknown 3
Kepler-327 Cygnus 19h30m34.2s 44° 05′ 16″ 0.55 3799 unknown 3
Kepler-326 Cygnus 19h37m18.1s +46° 00′ 08″ 0.98 5105 unknown 3
Kepler-325 Cygnus 19h19m20.5s +49° 49′ 32″ 0.87 5752 unknown 3

Stars orbited by both planets and brown dwarfs

[edit]

Stars orbited by objects on both sides of the ~13Jupiter massdividing line.

See also

[edit]


Notes

[edit]
  1. ^Barnard's Starat closer distance has a candidate four-planet system, of which one planet has been confirmed so far.[2]

References

[edit]
  1. ^Schneider, Jean (6 December 2016)."Interactive Extra-solar Planets Catalog".Extrasolar Planets Encyclopaedia.Archivedfrom the original on 2016-12-09.Retrieved2016-12-06.
  2. ^González Hernández, J. I.; et al. (October 2024). "A sub-Earth-mass planet orbiting Barnard's star".Astronomy & Astrophysics.690:A79.arXiv:2410.00569.Bibcode:2024A&A...690A..79G.doi:10.1051/0004-6361/202451311.A79.{{cite journal}}:CS1 maint: numeric names: authors list (link)
  3. ^Beaulieu, Jean-Philippe; Bennett, D. P.; Batista, Virginie; Fukui, A. (January 2016)."Revisiting the microlensing event OGLE 2012-BLG-0026: A solar mass star with two cold giant planets".researchgate.net.
  4. ^Brewer, John M.; Wang, Songhu; Fischer, Debra A.; Foreman-Mackey, Daniel (2018-10-24)."Compact multi-planet systems are more common around metal poor hosts".The Astrophysical Journal.867(1). L3.arXiv:1810.10009.Bibcode:2018ApJ...867L...3B.doi:10.3847/2041-8213/aae710.S2CID67832557.
  5. ^Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR online data catalog: General catalogue of variable stars (Samus+ 2007–2013)".VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S.1.Bibcode:2009yCat....102025S.
  6. ^Bessell, M. S. (1991)."The late-M dwarfs".The Astronomical Journal.101:662.Bibcode:1991AJ....101..662B.doi:10.1086/115714.
  7. ^Mascareño, A. Suárez; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; Hernández, J. I. González; Rebolo, R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Osorio, M. R. Zapatero; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Prieto, C. Allende; Alves, D.; Amate, M.; Avila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeng, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D’Odorico, V.; Deiries, S.; Delabre, B.; Marcantonio, P. Di; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Santos, R. Génova; Hughes, I.; Iwert, O.; Kerber, F.; Knusdstrup, J.; Landoni, M.; Lavie, B.; Lillo-Box, J.; Lizon, J.; Curto, G. Lo; Maire, C.; Manescau, A.; Martins, C. J. a. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Tschudi, S. Santana; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Sousa, S.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, F. (1 July 2020)."Revisiting Proxima with ESPRESSO".Astronomy & Astrophysics.639:A77.arXiv:2005.12114.Bibcode:2020A&A...639A..77S.doi:10.1051/0004-6361/202037745.ISSN0004-6361.S2CID218869742.Archivedfrom the original on 27 June 2022.Retrieved9 May2022.
  8. ^Del Genio, Anthony D.; Way, Michael J.; Amundsen, David S.; Aleinov, Igor; Kelley, Maxwell; Kiang, Nancy Y.; Clune, Thomas L. (January 2019)."Habitable Climate Scenarios for Proxima Centauri b with a Dynamic Ocean".Astrobiology.19(1): 99–125.arXiv:1709.02051.Bibcode:2019AsBio..19...99D.doi:10.1089/ast.2017.1760.ISSN1531-1074.PMID30183335.S2CID52165056.
  9. ^Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. (June 23, 2022)."Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry".The Astronomical Journal.164:84 (3) (published August 8, 2022): 18pp.arXiv:2207.13524.Bibcode:2022AJ....164...84A.doi:10.3847/1538-3881/ac7ce6.
  10. ^Oja, T. (August 1985), "Photoelectric photometry of stars near the north Galactic pole. II",Astronomy and Astrophysics Supplement Series,61:331–339,Bibcode:1985A&AS...61..331O
  11. ^Dickinson, David (2015-12-23)."14 Red Dwarf Stars to View with Backyard Telescopes".Universe Today.Archivedfrom the original on 2021-02-11.Retrieved2016-12-04.
  12. ^Croswell, Ken (July 2002)."The Brightest Red Dwarf".KenCroswell.com.Archivedfrom the original on 2018-10-20.Retrieved2016-12-04.
  13. ^Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N.; Luque, R.; et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887",Science,368(6498): 1477–1481,arXiv:2006.16372,Bibcode:2020Sci...368.1477J,doi:10.1126/science.aaz0795,PMID32587019,S2CID220075207
  14. ^Pozuelos, Francisco J.; Suárez, Juan C.; de Elía, Gonzalo C.; Berdiñas, Zaira M.; Bonfanti, Andrea; Dugaro, Agustín; et al. (2020). "GJ 273: On the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec".Astronomy & Astrophysics.641:A23.arXiv:2006.09403.Bibcode:2020A&A...641A..23P.doi:10.1051/0004-6361/202038047.S2CID219721292.GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e... the system remained stable only for values of inclinations ranging from 90◦ to ~72◦
  15. ^Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017)."The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293".Astronomy and Astrophysics.602.A88.arXiv:1703.05386.Bibcode:2017A&A...602A..88A.doi:10.1051/0004-6361/201630153.S2CID119418595.Archivedfrom the original on 2022-09-28.Retrieved2022-02-25.
  16. ^Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)".VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S.1.Bibcode:2009yCat....102025S.
  17. ^Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S.; Hidalgo Soto, D.; Strachan, J.B.P.; Hambsch, F-J.; López-González, M. J.; Morales, N.; Rodríguez López, C.; Berdiñas, Z. M.; Ribas, I.; Pallé, E.; Reiners, Ansgar; Anglada-Escudé, G. (2019-08-13)."Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061".Monthly Notices of the Royal Astronomical Society.arXiv:1908.04717.doi:10.1093/mnras/staa248.S2CID199551874.
  18. ^Caballero, J. A.; Reiners, Ansgar; Ribas, I.; Dreizler, S.; Zechmeister, M.; et al. (12 June 2019)."The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star".Astronomy & Astrophysics.627:A49.arXiv:1906.07196.Bibcode:2019A&A...627A..49Z.doi:10.1051/0004-6361/201935460.ISSN0004-6361.S2CID189999121.
  19. ^Davison, Cassy L.; White, Russel J.; Henry, Todd J.; Riedel, Adric R.; Jao, Wei-Chun; Bailey III, John I.; Quinn, Samuel N.; Justin R., Cantrell; John P., Subasavage; Jen G., Winters (2015). "A 3D Search for Companions to 12 Nearby M-Dwarfs".The Astronomical Journal.149(3): 106.arXiv:1501.05012.Bibcode:2015AJ....149..106D.doi:10.1088/0004-6256/149/3/106.S2CID9719725.
  20. ^Stuart Gary (17 December 2015)."Potentially habitable super-Earth discovered orbiting star 14 light years from Earth".ABC News (Australia).Archivedfrom the original on 2017-06-09.Retrieved2022-05-10.
  21. ^Kane, Stephen R.; et al. (February 2017), "Characterization of the Wolf 1061 Planetary System",The Astrophysical Journal,835(2): 9,arXiv:1612.09324,Bibcode:2017ApJ...835..200K,doi:10.3847/1538-4357/835/2/200,S2CID30738573,200.
  22. ^Jones, Barrie W.; et al. (2005)."Prospects for Habitable" Earths "in Known Exoplanetary Systems".The Astrophysical Journal.622(2): 1091–1101.arXiv:astro-ph/0503178.Bibcode:2005ApJ...622.1091J.doi:10.1086/428108.
  23. ^Wyatt, M. C.; et al. (2012)."Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems".Monthly Notices of the Royal Astronomical Society.424(2): 1206.arXiv:1206.2370.Bibcode:2012MNRAS.424.1206W.doi:10.1111/j.1365-2966.2012.21298.x.S2CID54056835.
  24. ^Kennedy, G. M.; Matra, L.; Marmier, M.; Greaves, J. S.; Wyatt, M. C.; Bryden, G.; Holland, W.; Lovis, C.; Matthews, B. C.; Pepe, F.; Sibthorpe, B.; Udry, S. (2015)."Kuiper belt structure around nearby super-Earth host stars".Monthly Notices of the Royal Astronomical Society.449(3): 3121.arXiv:1503.02073.Bibcode:2015MNRAS.449.3121K.doi:10.1093/mnras/stv511.S2CID53638901.
  25. ^"Reanalysis of data suggests 'habitable' planet GJ 581d really could exist".Astronomy Now.9 March 2015.Archivedfrom the original on 20 May 2015.Retrieved27 May2015.
  26. ^Anglada-Escudé, Guillem; Arriagada, Pamela; Vogt, Steven S.; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Minniti, Dante; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S. (2012). "A Planetary System around the nearby M Dwarf GJ 667C with At Least One Super-Earth in Its Habitable Zone".The Astrophysical Journal Letters.751(1). L16.arXiv:1202.0446.Bibcode:2012ApJ...751L..16A.doi:10.1088/2041-8205/751/1/L16.S2CID16531923.
  27. ^Anglada-Escudé, Guillem; et al. (2013-06-07)."A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone"(PDF).Astronomy & Astrophysics.556:A126.arXiv:1306.6074.Bibcode:2013A&A...556A.126A.doi:10.1051/0004-6361/201321331.S2CID14559800.Archived fromthe original(PDF)on 2013-06-30.Retrieved2013-06-25.
  28. ^Makarov, Valeri V.; Berghea, Ciprian (2013). "Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of Gj 667C".The Astrophysical Journal.780(2): 124.arXiv:1311.4831.doi:10.1088/0004-637X/780/2/124.S2CID118700510.
  29. ^Vogt, Steven S.; et al. (November 2015). "Six Planets Orbiting HD 219134".The Astrophysical Journal.814(1): 12.arXiv:1509.07912.Bibcode:2015ApJ...814...12V.doi:10.1088/0004-637X/814/1/12.S2CID45438051.
  30. ^Dietrich, Jeremy; Apai, Dániel; Malhotra, Renu (2022)."An Integrative Analysis of the HD 219134 Planetary System and the Inner solar system: Extending DYNAMITE with Enhanced Orbital Dynamical Stability Criteria".The Astronomical Journal.163(2): 88.arXiv:2112.05337.Bibcode:2022AJ....163...88D.doi:10.3847/1538-3881/ac4166.S2CID245117944.
  31. ^Wyatt, M. C.; et al. (2012)."Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems".MNRAS.424(2): 1206–1223.arXiv:1206.2370.Bibcode:2012MNRAS.424.1206W.doi:10.1111/j.1365-2966.2012.21298.x.S2CID54056835.
  32. ^Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021)."The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades".The Astrophysical Journal Supplement Series.255(1): 8.arXiv:2105.11583.Bibcode:2021ApJS..255....8R.doi:10.3847/1538-4365/abe23c.S2CID235186973.
  33. ^Kennedy, G. M.; et al. (June 2018)."Kuiper belt analogues in nearby M-type planet-host systems".Monthly Notices of the Royal Astronomical Society.476(4): 4584–4591.arXiv:1803.02832.Bibcode:2018MNRAS.476.4584K.doi:10.1093/mnras/sty492.
  34. ^Falconer, Rebecca,Newly uncovered super-Earth 31 light-years away may be habitableArchived2019-12-18 at theWayback Machine,Axios, August 1, 2019
  35. ^Reddy, Francis; Center, NASA’s Goddard Space Flight (2019-07-31)."TESS Discovers Habitable Zone Planet in GJ 357 System".SciTechDaily.Archivedfrom the original on 2019-08-01.Retrieved2019-08-01.
  36. ^"Potentially habitable 'super-Earth' discovered just 31 light-years away".NBC News.31 July 2019.Archivedfrom the original on 2019-07-31.Retrieved2019-08-01.
  37. ^Garner, Rob (2019-07-30)."NASA's TESS Helps Find Intriguing New World".NASA.Archivedfrom the original on 2019-08-01.Retrieved2019-08-01.
  38. ^Demangeon, Oliver D. S.; Zapatero Osorio, M. R.; Alibert, Y.; Barros, S. C. C.; Adibekyan, V.; Tabernero, H. M.; et al. (July 2021)."A warm terrestrial planet with half the mass of Venus transiting a nearby star"(PDF).Astronomy & Astrophysics.653:38.arXiv:2108.03323.Bibcode:2021A&A...653A..41D.doi:10.1051/0004-6361/202140728.S2CID236957385.Archived(PDF)from the original on 2021-11-13.Retrieved2022-03-03.
  39. ^Dedrick, Cayla M.; Fulton, Benjamin J.; Knutson, Heather A.; Howard, Andrew W.; Beatty, Thomas G.; Cargile, Phillip A.; Gaudi, B. Scott; Hirsch, Lea A.; Kuhn, Rudolf B.; Lund, Michael B.; James, David J.; Kosiarek, Molly R.; Pepper, Joshua; Petigura, Erik A.; Rodriguez, Joseph E. (January 2021)."Two Planets Straddling the Habitable Zone of the Nearby K Dwarf Gl 414A".The Astronomical Journal.161(2): 86.arXiv:2009.06503.Bibcode:2021AJ....161...86D.doi:10.3847/1538-3881/abd0ef.ISSN1538-3881.
  40. ^"GJ 414 Overview".NASA Exoplanet Archive.Archivedfrom the original on December 9, 2023.RetrievedJanuary 4,2024.
  41. ^Schweitzer, A.; et al. (May 2019). "The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars".Astronomy & Astrophysics.625:16.arXiv:1904.03231.Bibcode:2019A&A...625A..68S.doi:10.1051/0004-6361/201834965.S2CID102351979.A68.
  42. ^Stephenson, C. B. (July 1986), "Dwarf K and M stars of high proper motion found in a hemispheric survey",The Astronomical Journal,92:139–165,Bibcode:1986AJ.....92..139S,doi:10.1086/114146.
  43. ^Sutherland, Paul (March 5, 2014)."Habitable planets common around red dwarf stars".Sen.Sen Corporation Ltd.Archivedfrom the original on November 12, 2020.RetrievedJuly 28,2022.
  44. ^Tuomi, Mikko; et al. (2014), "Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics",Monthly Notices of the Royal Astronomical Society,441(2): 1545–1569,arXiv:1403.0430,Bibcode:2014MNRAS.441.1545T,doi:10.1093/mnras/stu358,S2CID32965505.
  45. ^Lovis, Christophe; et al. (2006)."An extrasolar planetary system with three Neptune-mass planets"(PDF).Nature.441(7091): 305–309.arXiv:astro-ph/0703024.Bibcode:2006Natur.441..305L.doi:10.1038/nature04828.PMID16710412.S2CID4343578.Archived fromthe original(PDF)on 2016-03-03.Retrieved2022-02-24.
  46. ^Díaz, R. F.; et al. (2016)."The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles".Astronomy and Astrophysics.585.A134.arXiv:1510.06446.Bibcode:2016A&A...585A.134D.doi:10.1051/0004-6361/201526729.S2CID118531921.Archivedfrom the original on 2021-02-24.Retrieved2022-02-24.
  47. ^Tuomi, Mikko; Anglada-Escudé, Guillem; Gerlach, Enrico; Jones, Hugh R. A.; Reiners, Ansgar; Rivera, Eugenio J.; Vogt, Steven S.; Butler, R. Paul (17 December 2012). "Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307".Astronomy & Astrophysics.549:A48.arXiv:1211.1617.Bibcode:2013A&A...549A..48T.doi:10.1051/0004-6361/201220268.S2CID7424216.
  48. ^ R. P. Butler; Marcy, Geoffrey W. (1996)."A Planet Orbiting 47 Ursae Majoris".Astrophysical Journal Letters.464(2): L153–L156.Bibcode:1996ApJ...464L.153B.doi:10.1086/310102.
  49. ^ P. C. Gregory; D. A. Fischer (2010)."A Bayesian periodogram finds evidence for three planets in 47 Ursae Majoris".Monthly Notices of the Royal Astronomical Society.403(2): 731–747.arXiv:1003.5549.Bibcode:2010MNRAS.403..731G.doi:10.1111/j.1365-2966.2009.16233.x.S2CID16722873.
  50. ^Takeda, Genya; et al. (2007). "Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog".The Astrophysical Journal Supplement Series.168(2): 297–318.arXiv:astro-ph/0607235.Bibcode:2007ApJS..168..297T.doi:10.1086/509763.S2CID18775378.
  51. ^Sousa, S. G.; et al. (August 2008). "Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes".Astronomy and Astrophysics.487(1): 373–381.arXiv:0805.4826.Bibcode:2008A&A...487..373S.doi:10.1051/0004-6361:200809698.S2CID18173201.
  52. ^Lovis, C.; et al. (2011). "The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities".arXiv:1107.5325[astro-ph.SR].
  53. ^Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; et al. (2017). "A temperate rocky super-Earth transiting a nearby cool star".Nature.544(7650): 333–336.arXiv:1704.05556.Bibcode:2017Natur.544..333D.doi:10.1038/nature22055.PMID28426003.S2CID2718408.
  54. ^Overbye, Dennis(19 April 2017)."A new exoplanet may be most promising yet in search for life".New York Times.Archivedfrom the original on 11 November 2020.Retrieved20 April2017.
  55. ^Méndez, Abel (August 29, 2012)."A Hot Potential Habitable Exoplanet around Gliese 163".University of Puerto Rico at Arecibo(Planetary Habitability Laboratory). Archived fromthe originalon October 21, 2019.RetrievedSeptember 20,2012.
  56. ^Redd, Nola Taylor (September 20, 2012)."Newfound Alien Planet a Top Contender to Host Life".Space.com.Archivedfrom the original on December 26, 2019.RetrievedSeptember 20,2012.
  57. ^"Simbad - Object view".simbad.cds.unistra.fr.Retrieved2024-01-04.
  58. ^Beard, Corey; Robertson, Paul; Kanodia, Shubham; Lubin, Jack; Cañas, Caleb I.; Gupta, Arvind F.; Holcomb, Rae; Jones, Sinclaire; Libby-Roberts, Jessica E.; Lin, Andrea S. J.; Mahadevan, Suvrath; Stefánsson, Guđmundur; Bender, Chad F.; Blake, Cullen H.; Cochran, William D. (2022-08-30)."GJ 3929: High-precision Photometric and Doppler Characterization of an Exo-Venus and Its Hot, Mini-Neptune-mass Companion".The Astrophysical Journal.936(1): 55.arXiv:2207.10672.Bibcode:2022ApJ...936...55B.doi:10.3847/1538-4357/ac8480.ISSN0004-637X.
  59. ^Anglada-Escudé, Guillem; Tuomi, Mikko (2012)."A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems"(PDF).Astronomy.548:A58.arXiv:1206.7118.Bibcode:2012A&A...548A..58A.doi:10.1051/0004-6361/201219910.S2CID17115882.[permanent dead link]
  60. ^Fulton, Benjamin J.; et al. (2015). "Three Super-Earths Orbiting HD 7924".The Astrophysical Journal.805(2): 175.arXiv:1504.06629.Bibcode:2015ApJ...805..175F.doi:10.1088/0004-637X/805/2/175.S2CID7969255.
  61. ^Damasso, M.; et al. (2020), "A precise architecture characterization of the π Mensae planetary system",Astronomy & Astrophysics,642:A31,arXiv:2007.06410,Bibcode:2020A&A...642A..31D,doi:10.1051/0004-6361/202038416,S2CID220496034
  62. ^Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017)."The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293".Astronomy and Astrophysics.602.A88.arXiv:1703.05386.Bibcode:2017A&A...602A..88A.doi:10.1051/0004-6361/201630153.S2CID119418595.Archivedfrom the original on 2022-09-28.Retrieved2022-02-25.
  63. ^"Planet LHS 1678 D".2024.
  64. ^Kane, Stephen R.; Fetherolf, Tara; et al. (March 2024)."A Perfect Tidal Storm: HD 104067 Planetary Architecture Creating an Incandescent World".The Astronomical Journal.167(5): 239.arXiv:2403.17062.Bibcode:2024AJ....167..239K.doi:10.3847/1538-3881/ad3820.
  65. ^Koerner, D. W.; et al. (February 2010),"New Debris Disk Candidates Around 49 Nearby Stars"(PDF),The Astrophysical Journal Letters,710(1): L26–L29,Bibcode:2010ApJ...710L..26K,doi:10.1088/2041-8205/710/1/L26,S2CID122844702,archived(PDF)from the original on 2020-09-15,retrieved2022-02-25.
  66. ^abFulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; Kaspar von Braun; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B. (2016)."Three Temperate Neptunes Orbiting Nearby Stars".The Astrophysical Journal.830(1): 46.arXiv:1607.00007.Bibcode:2016ApJ...830...46F.doi:10.3847/0004-637X/830/1/46.S2CID36666883.
  67. ^Unger, N.; et al. (October 2021)."The HARPS search for southern extra-solar planets".Astronomy & Astrophysics.654:A104.arXiv:2108.10198.Bibcode:2021A&A...654A.104U.doi:10.1051/0004-6361/202141351.eISSN1432-0746.ISSN0004-6361.
  68. ^Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.-L.; Bouchy, F.; Dumusque, X.; Lo Curto, G.; Mordasini, C.; Queloz, D.; Santos, N. C. (September 13, 2011),The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets,arXiv:1109.2497
  69. ^abHara, N. C.; Bouchy, F.; Stalport, M.; Boisse, I.; Rodrigues, J.; Delisle, J. B.; Santerne, A.; Henry, G. W.; Arnold, L.; Astudillo-Defru, N.; Borgniet, S.; Bonfils, X.; Bourrier, V.; Brugger, B.; Courcol, B.; Dalal, S.; Deleuil, M.; Delfosse, X.; Demangeon, O.; Díaz, R. F.; Dumusque, X.; Forveille, T.; Hébrard, G.; Hobson, M. J.; Kiefer, F.; Lopez, T.; Mignon, L.; Mousis, O.; Moutou, C.; Pepe, F.; Rey, J.; Santos, N. C.; Ségransan, D.; Udry, S.; Wilson, P. A. (March 10, 2020). "The SOPHIE search for northern extrasolar planets XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain".Astronomy & Astrophysics.636(1): L6.arXiv:1911.13296.Bibcode:2020A&A...636L...6H.doi:10.1051/0004-6361/201937254.S2CID208512859.
  70. ^Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample",The Astronomical Journal,132(1): 161–170,arXiv:astro-ph/0603770,Bibcode:2006AJ....132..161G,doi:10.1086/504637,S2CID119476992
  71. ^Lee, Man Hoi; et al. (2006). "On the 2:1 Orbital Resonance in the HD 82943 Planetary System".The Astrophysical Journal.641(2): 1178–1187.arXiv:astro-ph/0512551.Bibcode:2006ApJ...641.1178L.doi:10.1086/500566.S2CID119432579.
  72. ^"The Harsh Destiny of a Planet?"(Press release). Garching, Germany:European Southern Observatory.May 9, 2001.Archivedfrom the original on September 21, 2020.RetrievedDecember 30,2012.
  73. ^Rodriguez, Joseph E; Vanderburg, Andrew; Eastman, Jason D; Mann, Andrew W; Crossfield, Ian J. M; Ciardi, David R; Latham, David W; Quinn, Samuel N (2018)."A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at 30 pc".The Astronomical Journal.155(2): 72.arXiv:1709.01957.Bibcode:2018AJ....155...72R.doi:10.3847/1538-3881/aaa292.S2CID55459523.
  74. ^Andreolo, Claire; Cofield, Calla; Kazmierczak, Jeanette (6 January 2020)."NASA Planet Hunter Finds Earth-Size Habitable-Zone World".NASA.Archivedfrom the original on 14 April 2020.Retrieved6 January2020.
  75. ^Garner, Rob (6 January 2020)."NASA Planet Hunter Finds Earth-Size Habitable-Zone World".NASA.Archivedfrom the original on 5 April 2020.Retrieved6 January2020.
  76. ^Wall, Mike (6 January 2020)."NASA's TESS Planet Hunter Finds Its 1st Earth-Size World in 'Habitable Zone'".Space.com.Archivedfrom the original on 8 April 2020.Retrieved6 January2020.
  77. ^Vanderburg, Andrew; et al. (2019)."TESS Spots a Compact System of Super-Earths around the Naked-Eye Star HR 858".The Astrophysical Journal.881(1): L19.arXiv:1905.05193.Bibcode:2019ApJ...881L..19V.doi:10.3847/2041-8213/ab322d.S2CID153311715.
  78. ^Vogt, Steven S.; et al. (2005)."Five New Multicomponent Planetary Systems"(PDF).The Astrophysical Journal.632(1): 638–658.Bibcode:2005ApJ...632..638V.doi:10.1086/432901.S2CID16509245.Archived(PDF)from the original on 2018-07-22.Retrieved2020-12-11.
  79. ^Udry, S.; Dumusque, X.; Lovis, C.; Segransan, D.; Diaz, R. F.; Benz, W.; Bouchy, F.; Coffinet, A.; Lo Curto, G.; Mayor, M.; Mordasini, C.; Motalebi, F.; Pepe, F.; Queloz, D.; Santos, N. C.; Wyttenbach, A.; Alonso, R.; Collier Cameron, A.; Deleuil, M.; Figueira, P.; Gillon, M.; Moutou, C.; Pollacco, D.; Pompei, E. (2019), "The HARPS search for southern extra-solar planets. XLII. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions",Astronomy & Astrophysics,A37:622,arXiv:1705.05153,Bibcode:2019A&A...622A..37U,doi:10.1051/0004-6361/201731173,S2CID119095511
  80. ^Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.-L.; Bouchy, F.; Dumusque, G.; Curto, Lo; Mordasini, C.; Queloz, D.; Santos, N. C.; et al. (2011). "The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets".arXiv:1109.2497[astro-ph].
  81. ^Hébrard, Guillaume; Arnold, Luc; Forveille, Thierry; Correia, Alexandre C. M.; Laskar, Jacques; Bonfils, Xavier; Boisse, Isabelle; Díaz, Rodrigo F.; Hagelberg, Janis; Sahlmann, Johannes; Santos, Nuno C.; et al. (2016-04-01)."The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen".Astronomy and Astrophysics.588:A145.arXiv:1602.04622.Bibcode:2016A&A...588A.145H.doi:10.1051/0004-6361/201527585.ISSN0004-6361.S2CID55138055.Archivedfrom the original on 2019-04-10.Retrieved2022-02-26.
  82. ^Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; J. Sebastian Pineda; Michael Bottom; Barbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; Leslie Hebb; Evan N. Kirby; Andrew W. Howard; Howard T. Isaacson; Geoffrey W. Marcy; David Levitan; Tanio Diaz-Santos; Lee Armus; James P. Lloyd (2012). "Characterizing the Cool KOIs III. KOI-961: A Small Star with Large Proper Motion and Three Small Planets".The Astrophysical Journal.747(2): 144.arXiv:1201.2189.Bibcode:2012ApJ...747..144M.doi:10.1088/0004-637X/747/2/144.S2CID14889361.
  83. ^Tuomi, Mikko (6 April 2012). "Evidence for 9 planets in the 10180 system".Astronomy & Astrophysics.543:A52.arXiv:1204.1254v1.Bibcode:2012A&A...543A..52T.doi:10.1051/0004-6361/201118518.S2CID15876919.
  84. ^"Three Super-Earths Found Circling Nearby Red Dwarf".Archivedfrom the original on 2019-01-02.Retrieved2022-02-27.
  85. ^Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021)."The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades".The Astrophysical Journal Supplement Series.255(1): 8.arXiv:2105.11583.Bibcode:2021ApJS..255....8R.doi:10.3847/1538-4365/abe23c.S2CID235186973.
  86. ^abTeske, Johanna K; Shectman, Stephen A; Vogt, Steve S; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D; Thompson, Ian B; Arriagada, Pamela (2016)."The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 AU, Metal-Poor Binary" Twins "HD 133131A & B".The Astronomical Journal.152(6): 167.arXiv:1608.06216.Bibcode:2016AJ....152..167T.doi:10.3847/0004-6256/152/6/167.S2CID118852162.
  87. ^Orell-Miquel, J.; Nowak, G.; Murgas, F.; Palle, E.; Morello, G.; Luque, R.; Badenas-Agusti, M.; Ribas, I.; Lafarga, M.; Espinoza, N.; Morales, J. C.; Zechmeister, M.; Alqasim, A.; Cochran, W. D.; Gandolfi, D.; Goffo, E.; Kabáth, P.; Korth, J.; Livingston, J.; Lam, K. W. F.; Muresan, A.; Persson, C. M.; Van Eylen, V. (2023). "HD 191939 revisited: New and refined planet mass determinations, and a new planet in the habitable zone".Astronomy & Astrophysics.669:A40.arXiv:2211.00667.Bibcode:2023A&A...669A..40O.doi:10.1051/0004-6361/202244120.S2CID253197272.
  88. ^abLeleu, A.; Alibert, Y.; Hara, N. C.; Hooton, M. J.; Wilson, T. G.; Robutel, P.; Delisle, J.-B.; Laskar, J.; Hoyer, S.; Lovis, C.; Bryant, E. M.; Ducrot, E.; Cabrera, J.; Delrez, L.; Acton, J. S.; Adibekyan, V.; Allart, R.; Prieto, Allende; Alonso, R.; Alves, D.; et al. (2021-01-20). "Six transiting planets and a chain of Laplace resonances in TOI-178".Astronomy & Astrophysics.649:A26.arXiv:2101.09260.Bibcode:2021A&A...649A..26L.doi:10.1051/0004-6361/202039767.ISSN0004-6361.S2CID231693292.
  89. ^Rajpaul, V. M.; Buchhave, L. A.; Lacedelli, G.; Rice, K.; Mortier, A.; Malavolta, L.; Aigrain, S.; Borsato, L.; Mayo, A. W.; Charbonneau, D.; Damasso, M.; Dumusque, X.; Ghedina, A.; Latham, D. W.; López-Morales, M.; Magazzù, A.; Micela, G.; Molinari, E.; Pepe, F.; Piotto, G.; Poretti, E.; Rowther, S.; Sozzetti, A.; Udry, S.; Watson, C. A. (2021), "A HARPS-N mass for the elusive Kepler-37d: A case study in disentangling stellar activity and planetary signals",Monthly Notices of the Royal Astronomical Society,507(2): 1847–1868,arXiv:2107.13900,Bibcode:2021MNRAS.507.1847R,doi:10.1093/mnras/stab2192Kepler-37e is discussed in sections 2.2.2 & 6.4.
  90. ^"KOI-82".SIMBAD.Centre de données astronomiques de Strasbourg.Retrieved20 March2022.
  91. ^David, Trevor J.; Cody, Ann Marie; Hedges, Christina L.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Ciardi, David R.; Beichman, Charles A.; Petigura, Erik A.; Fulton, Benjamin J.; Isaacson, Howard T.; Howard, Andrew W. (August 2019)."A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau".The Astronomical Journal.158(2): 79.arXiv:1902.09670.Bibcode:2019AJ....158...79D.doi:10.3847/1538-3881/ab290f.ISSN0004-6256.S2CID119003936.
  92. ^David, Trevor J.; Petigura, Erik A.; Luger, Rodrigo; Foreman-Mackey, Daniel; Livingston, John H.; Mamajek, Eric E.; Hillenbrand, Lynne A. (2019-10-29)."Four Newborn Planets Transiting the Young Solar Analog V1298 Tau".The Astrophysical Journal.885(1): L12.arXiv:1910.04563.Bibcode:2019ApJ...885L..12D.doi:10.3847/2041-8213/ab4c99.ISSN2041-8213.S2CID204008446.
  93. ^Akinsanmi, B.; Santos, N. C.; Faria, J. P.; Oshagh, M.; Barros, S. C. C.; Santerne, A.; Charnoz, S. (2020-03-01)."Can planetary rings explain the extremely low density of HIP 41378 𝑓?".Astronomy & Astrophysics.635:L8.arXiv:2002.11422.doi:10.1051/0004-6361/202037618.ISSN0004-6361.Archivedfrom the original on 2021-10-28.Retrieved2022-03-19.
  94. ^Santerne, A.; Malavolta, L.; Kosiarek, M. R.; Dai, F.; Dressing, C. D.; Dumusque, X.; Hara, N. C.; Lopez, T. A.; Mortier, A.; Vanderburg, A.; Adibekyan, V.; Armstrong, D. J.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Berardo, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Buchhave, L. A.; Butler, R. P.; Collier Cameron, A.; Cosentino, R.; Crane, J. D.; Crossfield, I. J. M.; Damasso, M.; Deleuil, M. R.; Delgado Mena, E.; et al. (2019). "An extremely low-density and temperate giant exoplanet".arXiv:1911.07355[astro-ph.EP].
  95. ^Andrew Vanderburg; et al. (2016)."Five Planets Transiting a Ninth Magnitude Star".The Astrophysical Journal.827(1): L10.arXiv:1606.08441.Bibcode:2016ApJ...827L..10V.doi:10.3847/2041-8205/827/1/L10.S2CID8794583.
  96. ^Martin, Pierre-Yves (2022)."Planet HD 33142 c".exoplanet.eu.Archivedfrom the original on 2024-02-03.Retrieved2024-02-03.
  97. ^Hirano, Teruyuki; Dai, Fei; Gandolfi, Davide; Fukui, Akihiko; Livingston, John H.; Miyakawa, Kohei; Endl, Michael; Cochran, William D.; Alonso-Floriano, Francisco J.; Kuzuhara, Masayuki; Montes, David; Ryu, Tsuguru; Albrecht, Simon; Barragan, Oscar; Cabrera, Juan; Csizmadia, Szilard; Deeg, Hans; Eigmüller, Philipp; Erikson, Anders; Fridlund, Malcolm; Grziwa, Sascha; Guenther, Eike W.; Hatzes, Artie P.; Korth, Judith; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Narita, Norio; Nespral, David; Nowak, Grzegorz; et al. (2018)."Exoplanets around Low-mass Stars Unveiled by K2".The Astronomical Journal.155(3): 127.arXiv:1710.03239.Bibcode:2018AJ....155..127H.doi:10.3847/1538-3881/aaa9c1.S2CID54590874.
  98. ^Gilliland, Ronald L.; et al. (2013)."Kepler-68: Three Planets, One with a Density Between That of Earth and Ice Giants".The Astrophysical Journal.766(1). 40.arXiv:1302.2596.Bibcode:2013ApJ...766...40G.doi:10.1088/0004-637X/766/1/40.
  99. ^Mills, Sean M.; et al. (2019)."Long-period Giant Companions to Three Compact, Multiplanet Systems".The Astronomical Journal.157(4). 145.arXiv:1903.07186.Bibcode:2019AJ....157..145M.doi:10.3847/1538-3881/ab0899.S2CID119197547.
  100. ^Desidera, S.; et al. (2014)."The GAPS programme with HARPS-N at TNG. IV. A planetary system around XO-2S".Astronomy and Astrophysics.567(6). L6.arXiv:1407.0251.Bibcode:2014A&A...567L...6D.doi:10.1051/0004-6361/201424339.S2CID118567085.Archivedfrom the original on 2021-05-11.Retrieved2022-06-25.
  101. ^Damasso, M.; et al. (2015)."A comprehensive analysis of the XO-2 stellar and planetary systems".Astronomy & Astrophysics.575.A111.arXiv:1501.01424.doi:10.1051/0004-6361/201425332.
  102. ^Heller, René; Rodenbeck, Kai; Hippke, Michael (2019)."Transit least-squares survey. I. Discovery and validation of an Earth-sized planet in the four-planet system K2-32 near the 1:2:5:7 resonance".Astronomy and Astrophysics.625.A31.arXiv:1904.00651.Bibcode:2019A&A...625A..31H.doi:10.1051/0004-6361/201935276.Archivedfrom the original on 2022-01-25.Retrieved2022-03-04.
  103. ^Souto, Diogo; et al. (2017)."Chemical Abundances of M-dwarfs from the APOGEE Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186".The Astrophysical Journal.835(2): 239.arXiv:1612.01598.Bibcode:2017ApJ...835..239S.doi:10.3847/1538-4357/835/2/239.S2CID73634716.
  104. ^Bailer-Jones, C. A. L.; et al. (August 2018)."Estimating distances from parallaxes IV: Distances to 1.33 billion stars in Gaia Data Release 2".The Astronomical Journal.156(2): 58.arXiv:1804.10121.Bibcode:2018AJ....156...58B.doi:10.3847/1538-3881/aacb21.S2CID119289017.Distance to Kepler 186, after taking into account light extinctionArchived2022-05-11 at theWayback Machine
  105. ^"Kepler-186 f".NASA Exoplanet Archive.Archivedfrom the original on 18 March 2022.Retrieved19 July2016.
  106. ^Quintana, E. V.; Barclay, T.; Raymond, S. N.; Rowe, J. F.; Bolmont, E.; Caldwell, D. A.; Howell, S. B.; Kane, S. R.; Huber, D.; Crepp, J. R.;Lissauer, J. J.;Ciardi, D. R.; Coughlin, J. L.; Everett, M. E.; Henze, C. E.; Horch, E.; Isaacson, H.; Ford, E. B.; Adams, F. C.; Still, M.; Hunter, R. C.; Quarles, B.; Selsis, F. (2014-04-18). "An Earth-Sized Planet in the Habitable Zone of a Cool Star".Science.344(6181): 277–280.arXiv:1404.5667.Bibcode:2014Sci...344..277Q.doi:10.1126/science.1249403.PMID24744370.S2CID1892595.free version =http://www.nasa.gov/sites/default/files/files/kepler186_main_final.pdfArchived2014-04-18 at theWayback Machine
  107. ^Christiansen, Jessie L.; Crossfield, Ian J. M.; Barentsen, Geert; Lintott, Chris J.; Barclay, Thomas; Simmons, Brooke D.; Petigura, Erik; Schlieder, Joshua E.; Dressing, Courtney D.; Vanderburg, Andrew; Ciardi, David R.; Allen, Campbell; McMaster, Adam; Miller, Grant; Veldthuis, Martin; Allen, Sarah; Wolfenbarger, Zach; Cox, Brian; Zemiro, Julia; Howard, Andrew W.; Livingston, John; Sinukoff, Evan; Catron, Timothy; Grey, Andrew; Kusch, Joshua J. E.; Terentev, Ivan; Vales, Martin; Kristiansen, Martti H. (2018-01-11)."The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists".The Astronomical Journal.155(2): 57.arXiv:1801.03874.Bibcode:2018AJ....155...57C.doi:10.3847/1538-3881/aa9be0.ISSN1538-3881.S2CID52971376.
  108. ^Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Rappaport, Saul A.; Schwengeler, Hans Martin (2015-10-12). "Wasp-47: A Hot Jupiter System with Two Additional Planets Discovered by K2".The Astrophysical Journal.812(2): L18.arXiv:1508.02411.Bibcode:2015ApJ...812L..18B.doi:10.1088/2041-8205/812/2/L18.ISSN2041-8213.S2CID14681933.
  109. ^Neveu-VanMalle, M.; et al. (2016)."Hot Jupiters with relatives: Discovery of additional planets in orbit around WASP-41 and WASP-47".Astronomy and Astrophysics.586.A93.arXiv:1509.07750.Bibcode:2016A&A...586A..93N.doi:10.1051/0004-6361/201526965.S2CID53354547.Archivedfrom the original on 2022-02-28.Retrieved2022-05-08.
  110. ^"WASP-47".exoplanetarchive.ipac.caltech.edu.Archivedfrom the original on 2022-05-08.Retrieved2022-05-08.
  111. ^Malavolta, Luca; et al. (2017)."The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations".The Astronomical Journal.153(5). 224.arXiv:1703.06885.Bibcode:2017AJ....153..224M.doi:10.3847/1538-3881/aa6897.
  112. ^Lissauer, Jack J; Marcy, Geoffrey W; Bryson, Stephen T; Rowe, Jason F; Jontof-Hutter, Daniel; Agol, Eric; Borucki, William J; Carter, Joshua A; Ford, Eric B; Gilliland, Ronald L; Kolbl, Rea; Star, Kimberly M; Steffen, Jason H; Torres, Guillermo (2014). "Validation Of Kepler's Multiple Planet Candidates. Ii. Refined Statistical Framework and Descriptions of Systems of Special Interest".The Astrophysical Journal.784(1): 44.arXiv:1402.6352.Bibcode:2014ApJ...784...44L.doi:10.1088/0004-637X/784/1/44.S2CID119108651.
  113. ^abBarclay, Thomas; Quintana, Elisa V; Adams, Fred C; Ciardi, David R; Huber, Daniel; Foreman-Mackey, Daniel; Montet, Benjamin T; Caldwell, Douglas (2015). "The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis".The Astrophysical Journal.809(1): 7.arXiv:1505.01845.Bibcode:2015ApJ...809....7B.doi:10.1088/0004-637X/809/1/7.S2CID37742564.
  114. ^Schneider, Jean,"Star: Kepler-25",Extrasolar Planets Encyclopaedia,archived fromthe originalon 2012-06-16,retrieved2013-12-18
  115. ^Steffen, Jason H.; et al. (2012)."Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations".Monthly Notices of the Royal Astronomical Society.421(3): 2342–2354.arXiv:1201.5412.Bibcode:2012MNRAS.421.2342S.doi:10.1111/j.1365-2966.2012.20467.x.
  116. ^Marcy, Geoffrey W.; et al. (2014)."Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets".The Astrophysical Journal Supplement Series.210(2). 20.arXiv:1401.4195.Bibcode:2014ApJS..210...20M.doi:10.1088/0067-0049/210/2/20.
  117. ^Hand, Eric (20 December 2011). "Kepler discovers first Earth-sized exoplanets".Nature.doi:10.1038/nature.2011.9688.S2CID122575277.
  118. ^Nespral, D.; et al. (2017)."Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations".Astronomy and Astrophysics.601.A128.arXiv:1604.01265.Bibcode:2017A&A...601A.128N.doi:10.1051/0004-6361/201628639.S2CID55978628.Archivedfrom the original on 2022-05-04.Retrieved2022-03-18.
  119. ^Sinukoff, Evan; et al. (2016)."Eleven Multiplanet Systems From K2 Campaigns 1 and 2 and the Masses of Two Hot Super-Earths".The Astrophysical Journal.827(1). 78.arXiv:1511.09213.Bibcode:2016ApJ...827...78S.doi:10.3847/0004-637X/827/1/78.
  120. ^"Pulsar Planets".Archived fromthe originalon 30 December 2005.
  121. ^Wolszczan, A.; Frail, D. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12".Nature.355(6356): 145–147.Bibcode:1992Natur.355..145W.doi:10.1038/355145a0.S2CID4260368.
  122. ^abcBorucki, William J.;et al. (18 April 2013)."Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone".Science Express.340(6132): 587–90.arXiv:1304.7387.Bibcode:2013Sci...340..587B.doi:10.1126/science.1234702.hdl:1721.1/89668.PMID23599262.S2CID21029755.Archivedfrom the original on 2 May 2022.Retrieved18 March2022.
  123. ^Johnson, Michele; Harrington, J.D. (18 April 2013)."NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date".NASA.Archived fromthe originalon 8 May 2020.Retrieved18 March2022.
  124. ^Steffen, Jason H.; Fabrycky, Daniel C.; Ford, Eric B.; Carter, Joshua A.; Desert, Jean-Michel; Fressin, Francois; Holman, Matthew J.; Lissauer, Jack J.; Moorhead, Althea V.; Rowe, Jason F.; Ragozzine, Darin; Welsh, William F.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Bryson, Steve; Caldwell, Douglas A.; Charbonneau, David; Ciardi, David R.; Cochran, William D.; Endl, Michael; Everett, Mark E.; Gautier III, Thomas N.; Gilliland, Ron L.; Girouard, Forrest R.; Jenkins, Jon M.; Horch, Elliott; Howell, Steve B.; Isaacson, Howard; et al. (2012), "Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations",Monthly Notices of the Royal Astronomical Society,421(3),arXiv:1201.5412,Bibcode:2012MNRAS.421.2342S,doi:10.1111/j.1365-2966.2012.20467.x,S2CID11898578
  125. ^Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G. (2016), "An overabundance of low-density Neptune-like planets",Monthly Notices of the Royal Astronomical Society,466(2): 1868–1879,arXiv:1611.09236,doi:10.1093/mnras/stw3103,S2CID119408956
  126. ^Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Christa Van Laerhoven; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi (2015),Secure TTV Mass Measurements: Ten Kepler Exoplanets between 3 and 8 M🜨with Diverse Densities and Incident Fluxes,arXiv:1512.02003,doi:10.3847/0004-637X/820/1/39,S2CID11322397
  127. ^"Kepler-80".SIMBAD.Centre de données astronomiques de Strasbourg.Retrieved10 January2017.
  128. ^Xie, J.-W. (2013). "Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems".Astrophysical Journal Supplement Series.208(2): 22.arXiv:1208.3312.Bibcode:2013ApJS..208...22X.doi:10.1088/0067-0049/208/2/22.S2CID17160267.
  129. ^abShallue, C. J.; Vanderburg, A. (2017)."Identifying Exoplanets With Deep Learning: A Five Planet Resonant Chain Around Kepler-80 And An Eighth Planet Around Kepler-90"(PDF).The Astrophysical Journal.155(2): 94.arXiv:1712.05044.Bibcode:2018AJ....155...94S.doi:10.3847/1538-3881/aa9e09.S2CID4535051.Archived(PDF)from the original on 2017-12-24.Retrieved2017-12-15.
  130. ^MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi (2016-01-01)."A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets".The Astronomical Journal.152(4): 105.arXiv:1607.07540.Bibcode:2016AJ....152..105M.doi:10.3847/0004-6256/152/4/105.S2CID119265122.
  131. ^Ekrem Murat Esmer; Baştürk, Özgür; Selim Osman Selam; Aliş, Sinan (2022), "Detection of two additional circumbinary planets around Kepler-451",Monthly Notices of the Royal Astronomical Society,511(4): 5207–5216,arXiv:2202.02118,Bibcode:2022MNRAS.511.5207E,doi:10.1093/mnras/stac357
  132. ^Masuda, Kento; Hirano, Teruyuki; Taruya, Atsushi; Nagasawa, Makiko; Suto, Yasushi (2013). "Characterization of the KOI-94 System with Transit Timing Variation Analysis: Implication for the Planet-Planet Eclipse".The Astrophysical Journal.778(2): 185–200.arXiv:1310.5771.Bibcode:2013ApJ...778..185M.doi:10.1088/0004-637X/778/2/185.S2CID119264400.
  133. ^Bonomo, Aldo S.; Zeng, Li; Damasso, Mario; Leinhardt, Zoë M.; Justesen, Anders B.; Lopez, Eric; Lund, Mikkel N.; Malavolta, Luca; Silva Aguirre, Victor; Buchhave, Lars A.; Corsaro, Enrico; Denman, Thomas; Lopez-Morales, Mercedes; Mills, Sean M.; Mortier, Annelies; Rice, Ken; Sozzetti, Alessandro; Vanderburg, Andrew; Affer, Laura; Arentoft, Torben; Benbakoura, Mansour; Bouchy, François; Christensen-Dalsgaard, Jørgen; Collier Cameron, Andrew; Cosentino, Rosario; Dressing, Courtney D.; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F. M.; García, Rafael A.; Handberg, Rasmus; Harutyunyan, Avet; Johnson, John A.; Kjeldsen, Hans; Latham, David W.; Lovis, Christophe; Lundkvist, Mia S.; Mathur, Savita; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Nava, Chantanelle; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Poretti, Ennio; Sasselov, Dimitar; Ségransan, Damien; Udry, Stéphane; Watson, Chris (May 2019). "A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system".Nature Astronomy.3(5): 416–423.arXiv:1902.01316.Bibcode:2019NatAs...3..416B.doi:10.1038/s41550-018-0684-9.S2CID89604609.
  134. ^abLissauer, Jack J.; et al. (2011). "A closely packed system of low-mass, low-density planets transiting Kepler-11".Nature.470(7332): 53–58.arXiv:1102.0291.Bibcode:2011Natur.470...53L.doi:10.1038/nature09760.PMID21293371.S2CID4388001.
  135. ^Lissauer, Jack J.; et al. (2013)."All Six Planets Known to Orbit Kepler-11 Have Low Densities".The Astrophysical Journal.770(2). 131.arXiv:1303.0227.Bibcode:2013ApJ...770..131L.doi:10.1088/0004-637X/770/2/131.
  136. ^Libby-Roberts, Jessica E.; et al. (2020)."The Featureless Transmission Spectra of Two Super-puff Planets".The Astronomical Journal.159(2): 57.arXiv:1910.12988.Bibcode:2020AJ....159...57L.doi:10.3847/1538-3881/ab5d36.S2CID204950000.
  137. ^Nancy Atkinson (26 August 2010)."Kepler Discovers Multi-Planet System".Universe Today.Archivedfrom the original on 24 February 2012.Retrieved13 January2011.
  138. ^Holman, M. J.; et al. (2010)."Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations"(PDF).Science.330(6000): 51–54.Bibcode:2010Sci...330...51H.doi:10.1126/science.1195778.PMID20798283.S2CID8141085.Archived(PDF)from the original on 2022-12-07.Retrieved2022-06-17.
  139. ^Chou, Felicia; Hawkes, Alison; Landau, Elizabeth (14 December 2017)."Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star".NASA.Archivedfrom the original on 5 May 2020.Retrieved15 December2017.
  140. ^Schmitt, J. R.; Wang, J.; Fischer, D. A.; Jek, K. J.; Moriarty, J. C.; Boyajian, T. S.; Schwamb, M. E.; Lintott, C.; Lynn, S.; Smith, A. M.; Parrish, M.; Schawinski, K.; Simpson, R.; LaCourse, D.; Omohundro, M. R.; Winarski, T.; Goodman, S. J.; Jebson, T.; Schwengeler, H. M.; Paterson, D. A.; Sejpka, J.; Terentev, I.; Jacobs, T.; Alsaadi, N.; Bailey, R. C.; Ginman, T.; Granado, P.; Guttormsen, K. V.; Mallia, F.; Papillon, A. L.; Rossi, F.; Socolovsky, M.; Stiak, L. (2014-06-26). "Planet Hunters. VI. An Independent Characterization of KOI-351 and Several Long Period Planet Candidates From the Kepler Archival Data".The Astronomical Journal.148(28): 28.arXiv:1310.5912.Bibcode:2014AJ....148...28S.doi:10.1088/0004-6256/148/2/28.S2CID119238163.
  141. ^Patel, Neel V. (2020-06-05)."Astronomers have found a planet like Earth orbiting a star like the sun".MIT Technology Review.Archivedfrom the original on 2023-05-25.Retrieved2020-06-07.
  142. ^Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (2012). "Kepler-47: A Transiting Circumbinary Multi-Planet System".Science.337(6101): 1511–4.arXiv:1208.5489.Bibcode:2012Sci...337.1511O.doi:10.1126/science.1228380.PMID22933522.S2CID44970411.
  143. ^"NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars".exoplanets.nasa.gov.NASA.28 August 2012. Archived fromthe originalon 31 October 2012.Retrieved2 September2012.Kepler mission has discovered multiple transiting planets orbiting two suns for the first time
  144. ^Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (28 August 2012)."NASA's Kepler discovers multiple planets orbiting a pair of stars".Science.337(6101).Sciencedaily.com:1511–4.arXiv:1208.5489.Bibcode:2012Sci...337.1511O.doi:10.1126/science.1228380.PMID22933522.S2CID44970411.Archivedfrom the original on 21 September 2022.Retrieved4 November2012.
  145. ^Pichierri, Gabriele; Batygin, Konstantin; Morbidelli, Alessandro (2019), "The role of dissipative evolution for three-planet, near-resonant extrasolar systems",Astronomy & Astrophysics,625:A7,arXiv:1903.09474,Bibcode:2019A&A...625A...7P,doi:10.1051/0004-6361/201935259,S2CID85459759
  146. ^Mugrauer, M.; et al. (2006)."HD 3651 B: the first directly imaged brown dwarf companion of an exoplanet host star".Monthly Notices of the Royal Astronomical Society: Letters(abstract).373(1): L31–L35.arXiv:astro-ph/0608484.Bibcode:2006MNRAS.373L..31M.doi:10.1111/j.1745-3933.2006.00237.x.S2CID15608344.
  147. ^Marcy, Geoffrey W.; et al. (1999). "Two New Planets in Eccentric Orbits".The Astrophysical Journal.520(1): 239–247.arXiv:astro-ph/9904275.Bibcode:1999ApJ...520..239M.doi:10.1086/307451.S2CID16827678.
  148. ^Marcy, Geoffrey W.; et al. (2001)."Two Substellar Companions Orbiting HD 168443".The Astrophysical Journal.555(1): 418–425.Bibcode:2001ApJ...555..418M.doi:10.1086/321445.
  149. ^Cheetham, A.; et al. (June 2018). "Direct imaging of an ultracool substellar companion to the exoplanet host star HD 4113 A".Astronomy & Astrophysics.614:19.arXiv:1712.05217.Bibcode:2018A&A...614A..16C.doi:10.1051/0004-6361/201630136.S2CID119084543.A16.
  150. ^"Astronomers Announce First Clear Evidence of a Brown Dwarf".Space Telescope Science Institutenews release STScI-1995-48. November 29, 1995.Archivedfrom the original on 9 July 2008.Retrieved24 September2013.
  151. ^"Planet GJ 229 A b".Extrasolar Planets Encyclopaedia.1995.Retrieved7 September2022.
  152. ^"Planet GJ 229 A c".Extrasolar Planets Encyclopaedia.1995.Retrieved7 September2022.
  153. ^Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019), "Detection of the nearest Jupiter analog in radial velocity and astrometry data",Monthly Notices of the Royal Astronomical Society,490(4): 5002–5016,arXiv:1910.06804,Bibcode:2019MNRAS.490.5002F,doi:10.1093/mnras/stz2912,S2CID204575783
  154. ^Scholz, Ralf-Dieter; McCaughrean, Mark (2003-01-13)."Discovery of Nearest Known Brown Dwarf: Bright Southern Star Epsilon Indi Has Cool, Substellar Companion".European Southern Observatory. Archived fromthe originalon October 14, 2007.Retrieved2006-05-24.
  155. ^Scholz, R.-D.; McCaughrean, M. J.; Lodieu, N.; Kuhlbrodt, B. (February 2003). "ε Indi B: A new benchmark T dwarf".Astronomy and Astrophysics.398(3): L29–L33.arXiv:astro-ph/0212487.Bibcode:2003A&A...398L..29S.doi:10.1051/0004-6361:20021847.S2CID119474823.
  156. ^Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets".The Astrophysical Journal.646(1): 505–522.arXiv:astro-ph/0607493.Bibcode:2006ApJ...646..505B.doi:10.1086/504701.S2CID119067572.
  157. ^Feng, Fabo; Butler, R. Paul; et al. (August 2022)."3D Selection of 167 Substellar Companions to Nearby Stars".The Astrophysical Journal Supplement Series.262(21): 21.arXiv:2208.12720.Bibcode:2022ApJS..262...21F.doi:10.3847/1538-4365/ac7e57.S2CID251864022.
  158. ^Hatzes, Artie P.; et al. (2022)."A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for π Mensae c and a Third Planet on a 125 Day Orbit".The Astronomical Journal.163(5): 223.arXiv:2203.01018.Bibcode:2022AJ....163..223H.doi:10.3847/1538-3881/ac5dcb.S2CID247218413.
  159. ^Fischer, Debra A.; et al. (2003)."A Planetary Companion to HD 40979 and Additional Planets Orbiting HD 12661 and HD 38529".The Astrophysical Journal.586(2): 1394–1408.Bibcode:2003ApJ...586.1394F.doi:10.1086/367889.
  160. ^Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, Solène; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (2023-04-01)."Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603".Astronomy & Astrophysics.672:L7.arXiv:2303.11841.Bibcode:2023A&A...672L...7K.doi:10.1051/0004-6361/202245608.ISSN0004-6361.Archivedfrom the original on 2024-02-28.Retrieved2023-12-15.
  161. ^Zhang, Keming; Zang, Weicheng; El-Badry, Kareem; Lu, Jessica R.; et al. (September 2024). "An Earth-mass planet and a brown dwarf in orbit around a white dwarf".Nature Astronomy.arXiv:2409.02157.Bibcode:2024NatAs.tmp..237Z.doi:10.1038/s41550-024-02375-9.{{cite journal}}:CS1 maint: bibcode (link)