Jump to content

Kidinnu

From Wikipedia, the free encyclopedia

Kidinnu(alsoKidunnu;possiblyfl.4th century BC; possibly died 14 August 330 BC) was aChaldean astronomerandmathematician.StraboofAmaseiacalled him Kidenas,Pliny the Eldercalled him Cidenas, andVettius Valenscalled him Kidynas.

Somecuneiformand classical Greek and Latin texts mention an astronomer with this name, but it is not clear if they all refer to the same individual:

  • The Greek geographer Strabo of Amaseia, inGeography16.1.6, writes: "InBabylona settlement is set apart for the localphilosophers,the Chaldeans, as they are called, who are concerned mostly withastronomy;but some of these, who are not approved of by the others, profess to be writers ofhoroscopes.(There is also a tribe of the Chaldeans, and a territory inhabited by them, in the neighborhood of theArabsand of thePersian Gulf,as it is called.) There are also several tribes of the Chaldean astronomers. For example, some are called Orcheni [those fromUruk], others Borsippeni [those fromBorsippa], and several others by different names, as though divided into different sects which hold to various dogmas about the same subjects. And the mathematicians make mention of some of these men; as, for example, Kidenas,NabourianosandSoudines".
  • The Roman encyclopedist Pliny the Elder, inNatural HistoryII.vi.39, writes that theplanetMercurycan be viewed "sometimes before sunrise and sometimes after sunset, but according to Cidenas andSosigenesnever more than 22 degrees away from thesun".
  • The Roman astrologer Vettius Valens, inAnthology,says that he usedHipparchusfor the Sun,Sudinesand Kidynas andApolloniusfor theMoon,and again Apollonius for both types (ofeclipses,i.e.solar and lunar).
  • TheHellenisticastronomerPtolemy,inAlmagestIV 2, discusses the duration and ratios of several periods related to the Moon, as known to "ancient astronomers" and "the Chaldeans" and improved by Hipparchus. He mentions (at H272) the equality of 251(synodic) monthsto 269returns in anomaly.In a preserved classical manuscript of the excerpt known asHandy Tables,an anonymous reader in the third century wrote the comment (ascholium) that Kidenas discovered this relation.
  • Thecolophonof two BabylonianSystem Blunarephemeridesfrom Babylon (see ACT 122 for 104–101 BC, and ACT 123a for an unknown year) say that they are the "tersitu"(see below) of Kidinnu.
  • A damaged cuneiformastronomical diary tabletfrom Babylon (Babylonian Chronicle 8:the Alexander Chronicle, BM 36304) mentions that "ki-di-nu was killed by the sword" on day 15 of probably the 5th month of that year, which has been dated as 14 August 330 BC, less than a year afterAlexander the Greatconquered Babylon.

The following information is an excerpt of the overview of a century of scholarship in the sources referenced below.

The meaning oftersituis not known definitively. AlreadyFranz Xaver Kuglerproposed that the word can be interpreted here as "table"; in another context it seems to mean something like "tool", but in yet another it refers to a blue enamel paste. P. Schnabel, in a series of papers (1923–1927), interpreted the phrase as an assignment of authorship. He argued thatNaburimannudeveloped the Babylonian System A of calculatingSolar Systemephemerides, and that later Kidinnu developed the Babylonian System B. A Greco-Roman tradition, mentioned above, attributes to Kidinnu the discovery that 251 synodic months equals 269 anomalistic months. This relationship is implicit in System B, and is therefore another reason to believe that Kidinnu was involved in developing thelunar theoryof System B. However, the conclusion that Kidinnu is the main creator of System B is uncertain. Babylonian astronomers before Kidinnu's time apparently already knew theSaros cycle(old eclipse observations were collected in tables organised according to the Saros cycle since the late 5th century BC) and theMetonic cycle(the dates of the lunar calendar in the Saros tables follow a regular 19-year pattern of embolismic months at least since 498 BC); both cycles are also used in System B. Schnabel computed specific years (first 314 BC and later 379 BC) for the origin of the System B lunar theory, butFranz Xaver KuglerandOtto E. Neugebauerlater disproved Schnabel's calculations. Schnabel also asserted that Kidinnu discoveredprecessionwhen distinguishing betweensiderealandtropical years;Neugebauer contested this and current scholarship considers this conclusion to be unfounded.

The lunation length used in System B has also been attributed to Kidinnu. It is 29 days + 191 time degrees + 1/72 of a time degree ( "barley corn" ) = 29d31:50:8:20 (sexagesimal) = 29d+ 12h+ 793/1080h(Hebrewhelek) = 29.53059414...d.Being a rounded value in the archaic unit of "barley corns" it may be even more ancient. In any case, it is very accurate, within about ⅓ of a second per month.Hipparchusconfirmed this value for the lunation length.Ptolemyaccepted and used it, as mentioned above.Hillel IIfirst used it in theHebrew calendar,and it has been used for that purpose ever since.

The existing evidence makes it difficult to put Kidinnu at a time and place. Schnabel placed Kidinnu in Sippar, butOtto E. Neugebauershowed that Schnabel based this conclusion on a misreading of the cuneiform tablet. Classical sources like Strabo mention different "schools" and "doctrines" followed in different places (Babylon, Borsippa, Sippar, Uruk). System A and B have been used contemporaneously, and tablets for both systems have been found in both Babylon and Uruk. Tablets based on System B, associated with Kidinnu, have been found mostly in Uruk, but the earlier tablets came predominantly from Babylon. The oldest preserved tablet using System B comes from Babylon and dates from 258 to 257 BC. This is in theSeleucid era,but it is plausible that the traditional Chaldean astronomical systems had been developed before the Hellenistic period. The Alexander chronicle mentioned above suggests that the famous astronomer Kidinnu died in Babylon in 330 BC,ifit refers to the same Kidinnu who was mentioned on the ephemeris tablets centuries later.

Legacy

[edit]

References

[edit]
  1. ^D. H. Menzel; M. Minnaert; B. Levin; A. Dollfus; B. Bell (1971). "Report on Lunar Nomenclature by The Working Group of Commission 17 of the IAU".Space Science Reviews.12(2): 136.doi:10.1007/978-3-642-01965-4.
  • Otto E. Neugebauer:A History of Ancient Mathematical AstronomyPart One II Intr. 3.1 (pp. 354–357), Part Two IV A 4, 3A (p. 602) and IV A 4, 4A (pp. 610–612). Springer, Heidelberg 1975 (reprinted 2004).
  • Otto E. Neugebauer:Astronomical Cuneiform Texts.3 volumes. London: 1956; 2nd edition, New York: Springer, 1983. (Commonly abbreviated asACT): Part I pp. 12,13.
  • Herman Hunger andDavid Pingree:Astral Sciences in Mesopotamiapp. 183–188, 199–200, 200–201, 214–15, 219, 221, 236, 239. Brill, Leiden 1999.
[edit]