Jump to content

Lockheed L-2000

From Wikipedia, the free encyclopedia

Lockheed L-2000
Full-scale mockup of the L-2000-7 design
Role Supersonic airliner
Manufacturer Lockheed Corporation
Status Canceled in 1971

TheLockheed L-2000wasLockheed Corporation's entry in a government-funded competition to build the United States' firstsupersonic airlinerin the 1960s. The L-2000 lost the contract to theBoeing 2707,but that competing design was ultimately canceled for political, environmental and economic reasons.

In 1961, PresidentJohn F. Kennedycommitted the government to subsidize 75% of the development of a commercial airliner to compete with the Anglo-FrenchConcordethen under development. The director of theFederal Aviation Administration(FAA),Najeeb Halaby,elected to improve on the Concorde's design rather than compete head-to-head with it. TheSST,which might have represented a significant advance over the Concorde, was intended to carry 250 passengers (a large number at the time, more than twice as many as Concorde), fly atMach2.7-3.0, and have a range of 4,000 mi (7,400 km).

The program was launched on June 5, 1963, and the FAA estimated that by 1990 there would be a market for 500 SSTs.Boeing,Lockheed,andNorth Americanofficially responded. North American's design was soon rejected, but the Boeing and Lockheed designs were selected for further study.

Design and development[edit]

Early design studies[edit]

Most of the major US aviation firms spent at least some time in the 1950s considering SST designs. Lockheed's first attempts date to 1958. Lockheed sought an airplane with cruise speeds of around 2,000 miles per hour (3,200 km/h) with takeoff and landing speeds that compared to large subsonic jets of the same era.

Early designs followed Lockheed's tapered straight wing, similar to the one used on theF-104 Starfighter,with a delta-shapedcanardforaerodynamictrim. Duringwind-tunneltests, this design demonstrated substantial shifts in the airplane'scenter of pressure(C/L). These would require large trim changes as the aircraft changed speed, causingtrim drag.

Adelta wingwas substituted which alleviated a portion of the movement, but it was not deemed sufficient. Lockheed knew avariable geometry, swing-wingdesign could accomplish this goal, but felt it was too heavy:[citation needed]they preferred a fixed-wing solution. In a worst-case scenario, they were willing to design a fixed-wing aircraft using fuel for ballast.

By 1962, Lockheed arrived at a highly swept,cranked-arrowdesign featuring four engine pods buried in the wings and a canard. The improvement was closer to their goal, but still not optimal.

By 1963, they extended theleading edgeof the wing forward to eliminate the need for the canard, and re-shaped the wing into a double-delta shape with a mild twist andcamber.This, along with careful shaping of the fuselage, was able to control the shift in the center of pressure caused by the highly swept forward part of the wing developing lift supersonically. The engines were shifted from being buried in the wings to individual pods slung below the wings.

Later design studies[edit]

Artist's concept of an L-2000 inPan Amlivery at altitude in fullafterburner(top), and with landing gear extended

The new design was designatedL-2000-1and was 223 ft (70 m) long with anarrow-body132 in (335.2 cm) wide fuselage to meet aerodynamic requirements, allowing for passenger seating of five abreast seating in coach and a four-abreast arrangement in first-class seating. A typical mixed-classseating layoutwould equal around 170 passengers, with high-density layouts exceeding 200 passengers.

The L-2000-1 featured a long, pointed nose that was almost flat on top and curved on the bottom, which allowed for improved supersonic performance, and could be drooped for takeoff and landing to provide adequate visibility. The wing design featured a sharp forward inboard sweep of 80°, with the remaining part of the wing's leading edge swept back 60°, with an overall area of 8,370 ft² (778 m²). The high sweep angles produced powerfulvorticeson the leading edge which increased lift at moderate to highangles of attack,yet still retained stable airflow over the control surfaces during astall.These vortices also provided good directional control as well, which was somewhat deficient with the nose drooped at low speeds. The wing, while only 3% thick, provided substantial lift due to its large area, which, aided by vortex lift, allowed takeoff and landing speeds comparable to aBoeing 707.Additionally, a delta wing is a naturally rigid structure which requires little stiffening.

The plane'sundercarriagewas a traditionaltricycle typewith a twin-wheeled nose gear. Each of the two six-wheeled main gear utilized the same tires used on theDouglas DC-8,but which were filled with nitrogen and to lower pressures.

To provide an optimum entry date into service, Lockheed decided to use a beefed-upturbofanderivative of thePratt & Whitney J58.The J58 had already successfully proven itself as a high-thrust, high-performance jet engine on thetop-secretLockheedA-12(and subsequently on theLockheed SR-71Blackbird.) Since it was a turbofan, it was deemed to be quieter than a typical turbojet at low altitude and low speed, required noafterburnerfor takeoff, and allowed reduced power settings. The engines were placed in cylindrical pods with a wedge-shaped splitter, and a squarish intake providing the inlet system for the aircraft. The inlet was designed with the goal of requiring no moving parts, and was naturally stable. To reduce the noise fromsonic booms,rather than penetrate thesound barrierat a more ideal 30,000 ft (9,144 m), they intended to penetrate it at 42,000 ft (12,802 m) instead. It would not be possible on hot days, but on normal days this would be achievable.[clarification needed]Acceleration would continue through the sound barrier to Mach 1.15, at which point sonic booms would be audible on the ground. The plane would climb precisely to minimize sonic boom levels. After an initial level-off at around 71,500 ft (21,793 m), the plane would cruise climb upwards, ultimately reaching 76,500 ft (23,317 m). Descents would also be performed in a precise way to reduce sonic boom levels until subsonic speeds were reached.

By 1964, the US Government issued new requirements regarding the SST Program which required Lockheed to modify their design, by now called theL-2000-2.The new design had numerous modifications to the wing; one change was rounding the front of the forward delta in order to eliminate thepitch-uptendency. To increase high-speed aerodynamic efficiency, the wing's thickness was reduced to 2.3%, the leading edges were made sharper, the sweep angles were changed from 80/60° to 85/62°, and substantial twist and camber were added to the forward delta; much of the rear delta was twisted upwards to allow theelevonsto remain flush at Mach 3.0. In addition, wing/body fairings were added on the underside of the fuselage where the wings are located, allowing a more normally shaped nose to be used. To retain low-speed performance, the rear delta was enlarged considerably; to increase the payload, thetrailing edgefeatured a forward sweep of 10°, extending the inner part of the wing rearward. The new nose reduced the overall length to 214 ft (65.2 m) while retaining virtually the same internal dimensions. Wingspan was identical as before, and despite the thinner wing, the increased wing area of 9,026 ft² (838.5 m²) allowed the same takeoff performance. The airplane's overalllift-to-drag ratioincreased from 7.25 to 7.94.

During the course of the L-2000-2's development, the engine previously selected by Lockheed was no longer deemed acceptable. During the time frame between the L-2000-1 and L-2000-2,Pratt and Whitneydesigned a new afterburning turbofan called theJTF-17A,which produced greater amounts of thrust.General Electricdeveloped theGE4which was an afterburningturbojetwith variable guide-vanes, which was actually the less powerful of the two at sea level, but produced more power at high altitudes. Both engines required some degree of afterburner during cruise. Lockheed's design favored the JTF-17A over the GE-4, but there was the risk that GE would win the engine competition and Lockheed would win the SST contract, so they developed new engine pods that could accommodate either engine. Aerodynamic modifications allowed a shorter engine pod to be used and which utilized a new inlet design. This inlet featured minimal external cowl angles and was precisely contoured to allow a high-pressure recovery using no moving parts, and allowed maximum performance with either engine option. To allow additional airflow for noise-reduction, or to aid afterburner performance, a set of suck-in doors was added to the rear portion of the pod. To provide mid-air braking capability for rapid deceleration and rapid descents, and to assist ground braking, part of the nozzle could be employed as athrust reverserat speeds below Mach 1.2. The pods were also repositioned on the new wing to better shield them from abrupt changes in airflow.

The additional thrust from the new engines allowed supersonic penetration to be delayed until up to 45,000 ft (13,716 m) under virtually all conditions. Since at this point the possibility of supersonic overland flight was still considered to be an option, Lockheed also considered larger, shorter-ranged versions of the L-2000-2B. All designs weighed exactly the same, with a new tail design, changes to the fuselage length, extensions to the forward delta, increased capacity, and variations in fuel capacity. The largest version featured capacity for 250 domestic passengers, while the medium version featured transatlantic capability with 220 passengers. Despite the fuselage length changes, there was no appreciable increase in the risk of the aircraft pitching upwards too far (over-rotation) on takeoff.

Design competition[edit]

By 1966, the design took on its final form as theL-2000-7AandL-2000-7B.The L-2000-7A featured a re-designed wing and fuselage lengthened to 273 ft (83 m). The longer fuselage allows for a mixed-class seating of 230 passengers. The new wing featured a proportionately larger forward delta, with greater refinement to the wing's twist and curvature. Despite having the same wingspan, the wing-area was increased to 9,424 ft² (875 m²), with a slightly reduced 84° sweepback, and an increased 65° main delta wing, with reduced forward sweep along the trailing edge. Unlike previous versions, this aircraft featured a leading-edge flap to increase lift at low speeds, and to allow a slight down-elevon deflection. The fuselage, as a result of greater length, changes to the wing design, and attempts to further reduce drag, featured a slight vertical thinning in the fuselage where the wings were, a more prominent wing/body "belly" to carry fuel and cargo, a longer nose, and a refined tail. Since the airplane was not as directionally stable as before, the plane featured a ventral fin, located on the underside of the trailing fuselage. The L-2000-7B was extended to 293 ft (89 m), utilizing a lengthened cabin and a more pronounced upward-curving tail to reduce the chance of the tail striking the runway during over-rotation. Both designs had the same maximum weight of 590,000 lb (267,600 kg), and the aerodynamic lift-to-drag ratio was increased to 8:1.

Full-scalemock-upsof the Boeing 2707-200 and L-2000-7 designs were presented to the FAA, and on December 31, 1966 the Boeing design was selected. The Lockheed design was judged simpler to produce and less risky, but its performance during takeoff and at high speed was slightly lower. Because of the JTF-17A, the L-2000-7 was also predicted to be louder as well. The Boeing design was considered more advanced, representing a greater lead over the Concorde and thus more fitting to the original design mandate. Boeing eventually changed its advanced variable-geometry wing design to a simpler delta-wing similar to Lockheed's design, but with a tail. The Boeing SST was ultimately cancelled on May 20, 1971 after the US Congress stopped federal funding for the SST program on March 24, 1971.

Specifications (L-2000-7A)[edit]

Data from[citation needed]

General characteristics

  • Crew:2-3 flight crew
  • Capacity:273 pax
  • Length:273 ft 2 in (83.26 m)
  • Wingspan:116 ft (35 m)
  • Height:46 ft (14 m)
  • Wing area:9,424 sq ft (875.5 m2)
  • Empty weight:238,000 lb (107,955 kg)
  • Max takeoff weight:590,000 lb (267,619 kg)
  • Powerplant:4 ×General Electric GE4/J5MorPratt & Whitney JTF17A-21Lafterburning turbojetengines, 50,000 lbf (220 kN) thrust eachGE4ca dry, 65,000 lbf (290 kN) with afterburner

Performance

  • Maximum speed:Mach 3
  • Range:4,000 nmi (4,600 mi, 7,400 km)
  • Service ceiling:76,500 ft (23,300 m)
  • Wing loading:62.61 lb/sq ft (305.7 kg/m2)

See also[edit]

Aircraft of comparable role, configuration, and era

Related lists

References[edit]

Further reading[edit]

  • Boyne, Walter J,Beyond the Horizons: The Lockheed Story.New York: St. Martin's Press, 1998.ISBN0-312-19237-1.
  • Francillon, René J,Lockheed Aircraft Since 1913.Annapolis, Maryland: Naval Institute Press, 1987.ISBN0-87021-897-2.

External links[edit]