Jump to content

Mathematical problem

From Wikipedia, the free encyclopedia

Amathematical problemis a problem that can berepresented,analyzed, and possibly solved, with the methods ofmathematics.This can be a real-world problem, such as computing theorbitsof the planets in the solar system, or a problem of a more abstract nature, such asHilbert's problems.It can also be a problem referring to thenature of mathematicsitself, such asRussell's Paradox.

Real-world problems[edit]

Informal "real-world" mathematical problems are questions related to a concrete setting, such as "Adam has five apples and gives John three. How many has he left?". Such questions are usually more difficult to solve than regularmathematical exerciseslike "5 − 3", even if one knows the mathematics required to solve the problem. Known asword problems,they are used inmathematics educationto teach students to connect real-world situations to the abstract language of mathematics.

In general, to use mathematics for solving a real-world problem, the first step is to construct amathematical modelof the problem. This involves abstraction from the details of the problem, and the modeller has to be careful not to lose essential aspects in translating the original problem into a mathematical one. After the problem has been solved in the world of mathematics, thesolutionmust be translated back into the context of the original problem.

Abstract problems[edit]

Abstract mathematical problems arise in all fields of mathematics. While mathematicians usually study them for their own sake, by doing so, results may be obtained that find application outside the realm of mathematics.Theoretical physicshas historically been a rich source ofinspiration.

Some abstract problems have been rigorously proved to be unsolvable, such assquaring the circleandtrisecting the angleusing only thecompass and straightedge constructionsof classical geometry, and solving the generalquintic equationalgebraically. Also provably unsolvable are so-calledundecidable problems,such as thehalting problemforTuring machines.

Some well-known difficult abstract problems that have been solved relatively recently are thefour-colour theorem,Fermat's Last Theorem,and thePoincaré conjecture.

Computersdo not need to have a sense of the motivations of mathematicians in order to do what they do.[1]Formal definitions and computer-checkabledeductionsare absolutely central tomathematical science.

Degradation of problems to exercises[edit]

Mathematics educators usingproblem solvingfor evaluation have an issue phrased byAlan H. Schoenfeld:

How can one compare test scores from year to year, when very different problems are used? (If similar problems are used year after year, teachers and students will learn what they are, students will practice them: problems becomeexercises,and the test no longer assesses problem solving).[2]

The same issue was faced bySylvestre Lacroixalmost two centuries earlier:

... it is necessary to vary the questions that students might communicate with each other. Though they may fail the exam, they might pass later. Thus distribution of questions, the variety of topics, or the answers, risks losing the opportunity to compare, with precision, the candidates one-to-another.[3]

Such degradation of problems into exercises is characteristic of mathematics in history. For example, describing the preparations for theCambridge Mathematical Triposin the 19th century, Andrew Warwick wrote:

... many families of the then standard problems had originally taxed the abilities of the greatest mathematicians of the 18th century.[4]

See also[edit]

References[edit]

  1. ^(Newby & Newby 2008), "The second test is, that although such machines might execute many things with equal or perhaps greater perfection than any of us, they would, without doubt, fail in certain others from which it could be discovered that they did not act fromknowledge,but solely from the disposition of their organs: for whilereasonis an universal instrument that is alike available on every occasion, these organs, on the contrary, need a particular arrangement for each particular action; whence it must be morally impossible that there should exist in any machine a diversity of organs sufficient to enable it to act in all the occurrences of life, in the way in which our reason enable us to act. "translated from
    (Descartes 1637), page =57,"Et le second est que, bien qu'elles fissent plusieurs choses aussy bien, ou peutestre mieux qu'aucun de nois, ells manqueroient infalliblement en quelques autres, par lesquelles on découuriroit quelles n'agiroient pas par connoissance, mais seulement par la disposition de leurs organs. Car, au lieu que la raison est un instrument univeersel, qui peut seruir en toutes sortes de rencontres, ces organs ont besoin de quelque particliere disposition pour chaque action particuliere; d'oǜ vient qu'il est moralement impossible qu'il y en ait assez de diuers en une machine, pour la faire agir en toutes les occurrences de la vie, de mesme façon que nostre raison nous fait agir."
  2. ^Alan H. Schoenfeld(editor) (2007)Assessing mathematical proficiency,preface pages x, xi, Mathematical Sciences Research Institute,Cambridge University PressISBN978-0-521-87492-2
  3. ^S. F. Lacroix(1816)Essais sur l’enseignement en general, et sur celui des mathematiques en particulier,page 201
  4. ^Andrew Warwick (2003)Masters of Theory: Cambridge and the Rise of Mathematical Physics,page 145,University of Chicago PressISBN0-226-87375-7