Jump to content

Natural logarithm of 2

From Wikipedia, the free encyclopedia

The decimal value of thenatural logarithmof2(sequenceA002162in theOEIS) is approximately

The logarithm of 2 in other bases is obtained with theformula

Thecommon logarithmin particular is (OEIS:A007524)

The inverse of this number is thebinary logarithmof 10:

(OEIS:A020862).

By theLindemann–Weierstrass theorem,the natural logarithm of anynatural numberother than 0 and 1 (more generally, of any positivealgebraic numberother than 1) is atranscendental number.

Series representations[edit]

Rising alternate factorial[edit]

This is the well-known "alternating harmonic series".

Binary rising constant factorial[edit]

Other series representations[edit]

using
(sums of the reciprocals ofdecagonal numbers)

Involving the Riemann Zeta function[edit]

(γis theEuler–Mascheroni constantandζRiemann's zeta function.)

BBP-type representations[edit]

(See more aboutBailey–Borwein–Plouffe (BBP)-type representations.)

Applying the three general series for natural logarithm to 2 directly gives:

Applying them togives:

Applying them togives:

Applying them togives:

Representation as integrals[edit]

The natural logarithm of 2 occurs frequently as the result of integration. Some explicit formulas for it include:

Other representations[edit]

The Pierce expansion isOEIS:A091846

TheEngel expansionisOEIS:A059180

The cotangent expansion isOEIS:A081785

The simplecontinued fractionexpansion isOEIS:A016730

,

which yields rational approximations, the first few of which are 0, 1, 2/3, 7/10, 9/13 and 61/88.

Thisgeneralized continued fraction:

,[1]
also expressible as

Bootstrapping other logarithms[edit]

Given a value ofln 2,a scheme of computing the logarithms of otherintegersis to tabulate the logarithms of theprime numbersand in the next layer the logarithms of thecompositenumberscbased on theirfactorizations

This employs

prime approximate natural logarithm OEIS
2 0.693147180559945309417232121458 A002162
3 1.09861228866810969139524523692 A002391
5 1.60943791243410037460075933323 A016628
7 1.94591014905531330510535274344 A016630
11 2.39789527279837054406194357797 A016634
13 2.56494935746153673605348744157 A016636
17 2.83321334405621608024953461787 A016640
19 2.94443897916644046000902743189 A016642
23 3.13549421592914969080675283181 A016646
29 3.36729582998647402718327203236 A016652
31 3.43398720448514624592916432454 A016654
37 3.61091791264422444436809567103 A016660
41 3.71357206670430780386676337304 A016664
43 3.76120011569356242347284251335 A016666
47 3.85014760171005858682095066977 A016670
53 3.97029191355212183414446913903 A016676
59 4.07753744390571945061605037372 A016682
61 4.11087386417331124875138910343 A016684
67 4.20469261939096605967007199636 A016690
71 4.26267987704131542132945453251 A016694
73 4.29045944114839112909210885744 A016696
79 4.36944785246702149417294554148 A016702
83 4.41884060779659792347547222329 A016706
89 4.48863636973213983831781554067 A016712
97 4.57471097850338282211672162170 A016720

In a third layer, the logarithms of rational numbersr=a/bare computed withln(r) = ln(a) − ln(b),and logarithms of roots vialnnc=1/nln(c).

The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers2iclose to powersbjof other numbersbis comparatively easy, and series representations ofln(b)are found by coupling 2 tobwithlogarithmic conversions.

Example[edit]

Ifps=qt+dwith some smalld,thenps/qt= 1 +d/qtand therefore

Selectingq= 2representslnpbyln 2and a series of a parameterd/qtthat one wishes to keep small for quick convergence. Taking32= 23+ 1,for example, generates

This is actually the third line in the following table of expansions of this type:

s p t q d/qt
1 3 1 2 1/2=0.50000000
1 3 2 2 1/4= −0.25000000
2 3 3 2 1/8=0.12500000
5 3 8 2 13/256= −0.05078125
12 3 19 2 7153/524288=0.01364326
1 5 2 2 1/4=0.25000000
3 5 7 2 3/128= −0.02343750
1 7 2 2 3/4=0.75000000
1 7 3 2 1/8= −0.12500000
5 7 14 2 423/16384=0.02581787
1 11 3 2 3/8=0.37500000
2 11 7 2 7/128= −0.05468750
11 11 38 2 10433763667/274877906944=0.03795781
1 13 3 2 5/8=0.62500000
1 13 4 2 3/16= −0.18750000
3 13 11 2 149/2048=0.07275391
7 13 26 2 4360347/67108864= −0.06497423
10 13 37 2 419538377/137438953472=0.00305254
1 17 4 2 1/16=0.06250000
1 19 4 2 3/16=0.18750000
4 19 17 2 751/131072= −0.00572968
1 23 4 2 7/16=0.43750000
1 23 5 2 9/32= −0.28125000
2 23 9 2 17/512=0.03320312
1 29 4 2 13/16=0.81250000
1 29 5 2 3/32= −0.09375000
7 29 34 2 70007125/17179869184=0.00407495
1 31 5 2 1/32= −0.03125000
1 37 5 2 5/32=0.15625000
4 37 21 2 222991/2097152= −0.10633039
5 37 26 2 2235093/67108864=0.03330548
1 41 5 2 9/32=0.28125000
2 41 11 2 367/2048= −0.17919922
3 41 16 2 3385/65536=0.05165100
1 43 5 2 11/32=0.34375000
2 43 11 2 199/2048= −0.09716797
5 43 27 2 12790715/134217728=0.09529825
7 43 38 2 3059295837/274877906944= −0.01112965

Starting from the natural logarithm ofq= 10one might use these parameters:

s p t q d/qt
10 2 3 10 3/125=0.02400000
21 3 10 10 460353203/10000000000=0.04603532
3 5 2 10 1/4=0.25000000
10 5 7 10 3/128= −0.02343750
6 7 5 10 17649/100000=0.17649000
13 7 11 10 3110989593/100000000000= −0.03110990
1 11 1 10 1/10=0.10000000
1 13 1 10 3/10=0.30000000
8 13 9 10 184269279/1000000000= −0.18426928
9 13 10 10 604499373/10000000000=0.06044994
1 17 1 10 7/10=0.70000000
4 17 5 10 16479/100000= −0.16479000
9 17 11 10 18587876497/100000000000=0.18587876
3 19 4 10 3141/10000= −0.31410000
4 19 5 10 30321/100000=0.30321000
7 19 9 10 106128261/1000000000= −0.10612826
2 23 3 10 471/1000= −0.47100000
3 23 4 10 2167/10000=0.21670000
2 29 3 10 159/1000= −0.15900000
2 31 3 10 39/1000= −0.03900000

Known digits[edit]

This is a table of recent records in calculating digits ofln 2.As of December 2018, it has been calculated to more digits than any other natural logarithm[2][3]of a natural number, except that of 1.

Date Name Number of digits
January 7, 2009 A.Yee & R.Chan 15,500,000,000
February 4, 2009 A.Yee & R.Chan 31,026,000,000
February 21, 2011 Alexander Yee 50,000,000,050
May 14, 2011 Shigeru Kondo 100,000,000,000
February 28, 2014 Shigeru Kondo 200,000,000,050
July 12, 2015 Ron Watkins 250,000,000,000
January 30, 2016 Ron Watkins 350,000,000,000
April 18, 2016 Ron Watkins 500,000,000,000
December 10, 2018 Michael Kwok 600,000,000,000
April 26, 2019 Jacob Riffee 1,000,000,000,000
August 19, 2020 Seungmin Kim[4][5] 1,200,000,000,100
September 9, 2021 William Echols[6][7] 1,500,000,000,000

See also[edit]

References[edit]

  • Brent, Richard P. (1976)."Fast multiple-precision evaluation of elementary functions".J. ACM.23(2): 242–251.doi:10.1145/321941.321944.MR0395314.S2CID6761843.
  • Uhler, Horace S. (1940)."Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17".Proc. Natl. Acad. Sci. U.S.A.26(3): 205–212.Bibcode:1940PNAS...26..205U.doi:10.1073/pnas.26.3.205.MR0001523.PMC1078033.PMID16588339.
  • Sweeney, Dura W. (1963)."On the computation of Euler's constant".Mathematics of Computation.17(82): 170–178.doi:10.1090/S0025-5718-1963-0160308-X.MR0160308.
  • Chamberland, Marc (2003)."Binary BBP-formulae for logarithms and generalized Gaussian–Mersenne primes"(PDF).Journal of Integer Sequences.6:03.3.7.Bibcode:2003JIntS...6...37C.MR2046407.Archived fromthe original(PDF)on 2011-06-06.Retrieved2010-04-29.
  • Gourévitch, Boris; Guillera Goyanes, Jesús (2007)."Construction of binomial sums forπand polylogarithmic constants inspired by BBP formulas "(PDF).Applied Math. E-Notes.7:237–246.MR2346048.
  • Wu, Qiang (2003)."On the linear independence measure of logarithms of rational numbers".Mathematics of Computation.72(242): 901–911.doi:10.1090/S0025-5718-02-01442-4.
  1. ^Borwein, J.; Crandall, R.; Free, G. (2004)."On the Ramanujan AGM Fraction, I: The Real-Parameter Case"(PDF).Exper. Math.13(3): 278–280.doi:10.1080/10586458.2004.10504540.S2CID17758274.
  2. ^"y-cruncher".numberworld.org.Retrieved10 December2018.
  3. ^"Natural log of 2".numberworld.org.Retrieved10 December2018.
  4. ^"Records set by y-cruncher".Archived fromthe originalon 2020-09-15.RetrievedSeptember 15,2020.
  5. ^"Natural logarithm of 2 (Log(2)) world record by Seungmin Kim".19 August 2020.RetrievedSeptember 15,2020.
  6. ^"Records set by y-cruncher".RetrievedOctober 26,2021.
  7. ^"Natural Log of 2 - William Echols".RetrievedOctober 26,2021.

External links[edit]