Isotopes of neodymium
| ||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weightAr°(Nd) | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurringneodymium(60Nd) is composed of fivestable isotopes,142Nd,143Nd,145Nd,146Nd and148Nd, with142Nd being the most abundant (27.2%natural abundance), and two long-livedradioisotopes,144Nd and150Nd. In all, 35 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes144Nd (alpha decay,ahalf-life(t1/2) of2.29×1015years) and150Nd (double beta decay,t1/2of9.3×1018years), and for practical purposes they can be considered to be stable as well. All of the remainingradioactiveisotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stableartificial isotopeis147Nd with a half-life of 10.98 days. This element also has 15 knownmeta stateswith the most stable being139mNd (t1/25.5 hours),135mNd (t1/25.5 minutes) and133m1Nd (t1/2~70 seconds).
The primarydecay modesfor isotopes lighter than the most abundant stable isotope (also the only theoretically stable isotope),142Nd, areelectron captureandpositron decay,and the primary mode for heavier radioisotopes isbeta decay.The primarydecay productsfor lighter radioisotopes arepraseodymiumisotopes and the primary products for heavier ones arepromethiumisotopes.
Neodymium isotopes as fission products
[edit]Neodymium is one of the more commonfission productsthat results from the splitting ofuranium-233,uranium-235,plutonium-239andplutonium-241.The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors inGabonhad produced anatural nuclear fission reactorsome two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth.[4][5][6]
List of isotopes
[edit]
Nuclide [n 1] |
Z | N | Isotopic mass(Da) [n 2][n 3] |
Half-life [n 4][n 5] |
Decay mode [n 6] |
Daughter isotope [n 7] |
Spinand parity [n 8][n 5] |
Natural abundance(mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 5] | Normal proportion | Range of variation | |||||||||||||||||
124Nd | 60 | 64 | 123.95223(64)# | 500# ms | 0+ | ||||||||||||||
125Nd | 60 | 65 | 124.94888(43)# | 600(150) ms | 5/2(+#) | ||||||||||||||
126Nd | 60 | 66 | 125.94322(43)# | 1# s [>200 ns] | β+ | 126Pr | 0+ | ||||||||||||
127Nd | 60 | 67 | 126.94050(43)# | 1.8(4) s | β+ | 127Pr | 5/2+# | ||||||||||||
β+,p(rare) | 126Ce | ||||||||||||||||||
128Nd | 60 | 68 | 127.93539(21)# | 5# s | β+ | 128Pr | 0+ | ||||||||||||
β+,p (rare) | 127Ce | ||||||||||||||||||
129Nd | 60 | 69 | 128.93319(22)# | 4.9(2) s | β+ | 129Pr | 5/2+# | ||||||||||||
β+,p (rare) | 128Ce | ||||||||||||||||||
130Nd | 60 | 70 | 129.92851(3) | 21(3) s | β+ | 130Pr | 0+ | ||||||||||||
131Nd | 60 | 71 | 130.92725(3) | 33(3) s | β+ | 131Pr | (5/2)(+#) | ||||||||||||
β+,p (rare) | 130Ce | ||||||||||||||||||
132Nd | 60 | 72 | 131.923321(26) | 1.56(10) min | β+ | 132Pr | 0+ | ||||||||||||
133Nd | 60 | 73 | 132.92235(5) | 70(10) s | β+ | 133Pr | (7/2+) | ||||||||||||
133m1Nd | 127.97(11) keV | ~70 s | β+ | 133Pr | (1/2)+ | ||||||||||||||
133m2Nd | 176.10(10) keV | ~300 ns | (9/2–) | ||||||||||||||||
134Nd | 60 | 74 | 133.918790(13) | 8.5(15) min | β+ | 134Pr | 0+ | ||||||||||||
134mNd | 2293.1(4) keV | 410(30) μs | (8)– | ||||||||||||||||
135Nd | 60 | 75 | 134.918181(21) | 12.4(6) min | β+ | 135Pr | 9/2(–) | ||||||||||||
135mNd | 65.0(2) keV | 5.5(5) min | β+ | 135Pr | (1/2+) | ||||||||||||||
136Nd | 60 | 76 | 135.914976(13) | 50.65(33) min | β+ | 136Pr | 0+ | ||||||||||||
137Nd | 60 | 77 | 136.914567(12) | 38.5(15) min | β+ | 137Pr | 1/2+ | ||||||||||||
137mNd | 519.43(17) keV | 1.60(15) s | IT | 137Nd | (11/2–) | ||||||||||||||
138Nd | 60 | 78 | 137.911950(13) | 5.04(9) h | β+ | 138Pr | 0+ | ||||||||||||
138mNd | 3174.9(4) keV | 410(50) ns | (10+) | ||||||||||||||||
139Nd | 60 | 79 | 138.911978(28) | 29.7(5) min | β+ | 139Pr | 3/2+ | ||||||||||||
139m1Nd | 231.15(5) keV | 5.50(20) h | β+(88.2%) | 139Pr | 11/2– | ||||||||||||||
IT (11.8%) | 139Nd | ||||||||||||||||||
139m2Nd | 2570.9+X keV | ≥141 ns | |||||||||||||||||
140Nd | 60 | 80 | 139.90955(3) | 3.37(2) d | EC | 140Pr | 0+ | ||||||||||||
140mNd | 2221.4(1) keV | 600(50) μs | 7– | ||||||||||||||||
141Nd | 60 | 81 | 140.909610(4) | 2.49(3) h | β+ | 141Pr | 3/2+ | ||||||||||||
141mNd | 756.51(5) keV | 62.0(8) s | IT (99.95%) | 141Nd | 11/2– | ||||||||||||||
β+(.05%) | 141Pr | ||||||||||||||||||
142Nd | 60 | 82 | 141.9077233(25) | Stable | 0+ | 0.272(5) | 0.2680–0.2730 | ||||||||||||
143Nd[n 9] | 60 | 83 | 142.9098143(25) | Observationally Stable[n 10] | 7/2− | 0.122(2) | 0.1212–0.1232 | ||||||||||||
144Nd[n 9][n 11] | 60 | 84 | 143.9100873(25) | 2.29(16)×1015y | α | 140Ce | 0+ | 0.238(3) | 0.2379–0.2397 | ||||||||||
145Nd[n 9] | 60 | 85 | 144.9125736(25) | Observationally Stable[n 12] | 7/2− | 0.083(1) | 0.0823–0.0835 | ||||||||||||
146Nd[n 9] | 60 | 86 | 145.9131169(25) | Observationally Stable[n 13] | 0+ | 0.172(3) | 0.1706–0.1735 | ||||||||||||
147Nd[n 9] | 60 | 87 | 146.9161004(25) | 10.98(1) d | β− | 147Pm | 5/2− | ||||||||||||
148Nd[n 9] | 60 | 88 | 147.916893(3) | Observationally Stable[n 14] | 0+ | 0.057(1) | 0.0566–0.0578 | ||||||||||||
149Nd[n 9] | 60 | 89 | 148.920149(3) | 1.728(1) h | β− | 149Pm | 5/2− | ||||||||||||
150Nd[n 9][n 11][n 15] | 60 | 90 | 149.920891(3) | 9.3(7)×1018y[1] | β−β− | 150Sm | 0+ | 0.056(2) | 0.0553–0.0569 | ||||||||||
151Nd | 60 | 91 | 150.923829(3) | 12.44(7) min | β− | 151Pm | 3/2+ | ||||||||||||
152Nd | 60 | 92 | 151.924682(26) | 11.4(2) min | β− | 152Pm | 0+ | ||||||||||||
153Nd | 60 | 93 | 152.927698(29) | 31.6(10) s | β− | 153Pm | (3/2)− | ||||||||||||
154Nd | 60 | 94 | 153.92948(12) | 25.9(2) s | β− | 154Pm | 0+ | ||||||||||||
154m1Nd | 480(150)# keV | 1.3(5) μs | |||||||||||||||||
154m2Nd | 1349(10) keV | >1 μs | (5−) | ||||||||||||||||
155Nd | 60 | 95 | 154.93293(16)# | 8.9(2) s | β− | 155Pm | 3/2−# | ||||||||||||
156Nd | 60 | 96 | 155.93502(22) | 5.49(7) s | β− | 156Pm | 0+ | ||||||||||||
156mNd | 1432(5) keV | 135 ns | 5− | ||||||||||||||||
157Nd | 60 | 97 | 156.93903(21)# | 1.17(4) s[9] | β− | 157Pm | 5/2−# | ||||||||||||
158Nd | 60 | 98 | 157.94160(43)# | 810(30) ms | β− | 158Pm | 0+ | ||||||||||||
158mNd | 1648.1(14) keV | 339(20) ns | IT | 160Nd | (6−) | ||||||||||||||
159Nd | 60 | 99 | 158.94609(54)# | 500(30) ms | β− | 159Pm | 7/2+# | ||||||||||||
160Nd | 60 | 100 | 159.94909(64)# | 439(37) ms | β− | 160Pm | 0+ | ||||||||||||
160mNd | 1107.9(9) keV | 1.63(21) μs | IT | 160Nd | (4−) | ||||||||||||||
161Nd | 60 | 101 | 160.95388(75)# | 215(76) ms | β− | 161Pm | 1/2−# | ||||||||||||
162Nd | 60 | 102 | 310(200) ms | β− | 162Pm | 0+ | |||||||||||||
163Nd | 60 | 103 | 80# ms | β− | 163Pm | 5/2−# | |||||||||||||
This table header & footer: |
- ^mNd – Excitednuclear isomer.
- ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^Bold half-life– nearly stable, half-life longer thanage of universe.
- ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
EC: Electron capture IT: Isomeric transition
p: Proton emission - ^Bold symbolas daughter – Daughter product is stable.
- ^( ) spin value – Indicates spin with weak assignment arguments.
- ^abcdefghFission product
- ^Believed to undergo α decay to139Ce with a half-life over2.8×1019years[1][7][8]
- ^abPrimordialradionuclide
- ^Believed to undergo α decay to141Ce with a half-life of over6.1×1019years[1][7][8]
- ^Believed to undergo β−β−decay to146Sm or α decay to142Cewith a half-life of over3.3×1021years[1][7][8]
- ^Believed to undergo β−β−decay to148Smor α decay to144Ce with a half-life of over1.2×1019years[1][7][8]
- ^Predicted to be capable of undergoingtriple beta decayand quadruple beta decay with very long partial half-lives
References
[edit]- ^abcdefgKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45(3): 030001.doi:10.1088/1674-1137/abddae.
- ^"Standard Atomic Weights: Neodymium".CIAAW.2005.
- ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN1365-3075.
- ^Hemond, C.; Menet, C.; Menager, M.T. (1991)."U and Nd Isotopes from the New Oklo Reactor 10 (GABON): Evidence for Radioelements Migration".MRS Proceedings.257.doi:10.1557/PROC-257-489.
- ^"Oklo's Natural Nuclear Reactors".24 October 2020.
- ^"The Implications of the Oklo Phenomenon on the Constancy of Radiometric Decay Rates".
- ^abcdSokur, N.V.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Kobychev, V.V.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Polischuk, O.G.; Tretyak, V.I. (11 July 2023).Alpha decay of naturally occurring neodymium isotopes.XII International Conference on New Frontiers in Physics.
- ^abcdBelli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays".European Physical Journal A.55(140): 4–6.arXiv:1908.11458.Bibcode:2019EPJA...55..140B.doi:10.1140/epja/i2019-12823-2.S2CID201664098.
- ^Hartley, D. J.; Kondev, F. G.; Carpenter, M. P.; Clark, J. A.; Copp, P.; Kay, B.; Lauritsen, T.; Savard, G.; Seweryniak, D.; Wilson, G. L.; Wu, J. (2023-08-14). "First β−-decay spectroscopy study of157Nd ".Physical Review C.108(2). American Physical Society (APS): 024307.Bibcode:2023PhRvC.108b4307H.doi:10.1103/physrevc.108.024307.ISSN2469-9985.S2CID260913513.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean;Wapstra, Aaldert Hendrik(2003),"The NUBASEevaluation of nuclear and decay properties ",Nuclear Physics A,729:3–128,Bibcode:2003NuPhA.729....3A,doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert;Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003)."Atomic weights of the elements. Review 2000 (IUPAC Technical Report)".Pure and Applied Chemistry.75(6): 683–800.doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006)."Atomic weights of the elements 2005 (IUPAC Technical Report)".Pure and Applied Chemistry.78(11): 2051–2066.doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised".International Union of Pure and Applied Chemistry.19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean;Wapstra, Aaldert Hendrik(2003),"The NUBASEevaluation of nuclear and decay properties ",Nuclear Physics A,729:3–128,Bibcode:2003NuPhA.729....3A,doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center."NuDat 2.x database".Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.).CRC Handbook of Chemistry and Physics(85th ed.).Boca Raton, Florida:CRC Press.ISBN978-0-8493-0485-9.