Jump to content

p-Coumaric acid

From Wikipedia, the free encyclopedia
p-Coumaric acid
Skeletal formula of p-coumaric acid
Ball-and-stick model of p-coumaric acid
Names
Preferred IUPAC name
(2E)-3-(4-Hydroxyphenyl)prop-2-enoic acid
Other names
(E)-3-(4-Hydroxyphenyl)-2-propenoic acid
(E)-3-(4-Hydroxyphenyl)acrylic acid
para-Coumaric acid
4-Hydroxycinnamic acid
β-(4-Hydroxyphenyl)acrylic acid
Identifiers
3D model (JSmol)
2207383
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.116.210Edit this at Wikidata
EC Number
  • 231-000-0
2245630
KEGG
UNII
  • InChI=1S/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,12)/b6-3+checkY
    Key: NGSWKAQJJWESNS-ZZXKWVIFSA-NcheckY
  • InChI=1/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11, 12)/b6-3+/f/h11H
  • InChI=1/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,12)/b6-3+
    Key: NGSWKAQJJWESNS-ZZXKWVIFBJ
  • C1=CC(=CC=C1\C=C\C(=O)O)O
  • c1cc(ccc1/C=C/C(=O)O)O
Properties
C9H8O3
Molar mass 164.160g·mol−1
Melting point 210 to 213 °C (410 to 415 °F; 483 to 486 K)
Hazards
GHSlabelling:
GHS05: CorrosiveGHS06: ToxicGHS07: Exclamation mark
Danger
H301,H302,H311,H314,H315,H317,H319,H335
P260,P261,P264,P270,P271,P272,P280,P301+P310,P301+P312,P301+P330+P331,P302+P352,P303+P361+P353,P304+P340,P305+P351+P338,P310,P312,P321,P322,P330,P332+P313,P333+P313,P337+P313,P361,P362,P363,P403+P233,P405,P501
Except where otherwise noted, data are given for materials in theirstandard state(at 25 °C [77 °F], 100 kPa).

p-Coumaric acidis anorganic compoundwith the formula HOC6H4CH=CHCO2H. It is one of the three isomers ofhydroxycinnamic acid.It is a white solid that is only slightly soluble in water but very soluble inethanolanddiethyl ether.

Natural occurrences[edit]

It is a precursor to many natural products, especiallylignols,precursors to the woody mass that comprise many plants.[1]Of the myriad occurrences,p-coumaric acid can be found inGnetum cleistostachyum.[2]

In food[edit]

p-Coumaric acid can be found in a wide variety of edible plants and fungi such aspeanuts,navy beans,tomatoes,carrots,basilandgarlic.[citation needed]It is found inwineandvinegar.[3]It is also found inbarleygrain.[4]

p-Coumaric acid frompollenis a constituent ofhoney.[5]

Derivatives[edit]

p-Coumaric acid glucosidecan also be found in commercialbreadscontainingflaxseed.[6]Diesters ofp-coumaric acid can be found incarnauba wax.

Biosynthesis[edit]

It is biosynthesized fromcinnamic acidby the action of theP450-dependent enzyme4-cinnamic acid hydroxylase(C4H).

cinnamic acidpara-coumaric acid

It is also produced fromL-tyrosineby the action oftyrosine ammonia lyase(TAL).

L-Tyrosinepara-coumaric acid+ NH3+ H+

Biosynthetic building block[edit]

p-Coumaric acid is the precursor of4-ethylphenolproduced by theyeastBrettanomycesin wine. The enzymecinnamate decarboxylasecatalyzes the conversion ofp-coumaric acid into4-vinylphenol.[7]Vinyl phenol reductasethen catalyzes the reduction of 4-vinylphenol to 4-ethylphenol. Coumaric acid is sometimes added tomicrobiological media,enabling the positive identification ofBrettanomycesby smell.

The conversion ofp-coumaric acid to 4-ethyphenol byBrettanomyces

cis-p-Coumarate glucosyltransferaseis an enzyme that usesuridine diphosphate glucoseandcis-p-coumarate to produce4′-O-β-D-glucosyl-cis-p-coumarateanduridine diphosphate(UDP). This enzyme belongs to the family of glycosyltransferases, specifically the hexosyltransferases.[8]

Phloretic acid,found in therumenofsheepfed with dried grass, is produced by hydrogenation of the 2-propenoic side chain ofp-coumaric acid.[9]

The enzyme,resveratrol synthase,also known as stilbene synthase, catalyzes the synthesis ofresveratrolultimately from a tetraketide derived from4-coumaroyl CoA.[10]

p-Coumaric acid is a cofactor ofphotoactive yellow proteins (PYP),a homologous group of proteins found in many eubacteria.[11]

See also[edit]

References[edit]

  1. ^Wout Boerjan, John Ralph, Marie Baucher "Lignin Biosynthesis" Annu. Rev. Plant Biol. 2003, vol. 54, pp. 519–46.doi:10.1146/annurev.arplant.54.031902.134938
  2. ^Yao CS, Lin M, Liu X, Wang YH (April 2005). "Stilbene derivatives from Gnetum cleistostachyum".Journal of Asian Natural Products Research.7(2): 131–7.doi:10.1080/10286020310001625102.PMID15621615.S2CID37661785.
  3. ^Gálvez MC, Barroso CG, Pérez-Bustamante JA (1994). "Analysis of polyphenolic compounds of different vinegar samples".Zeitschrift für Lebensmittel-Untersuchung und -Forschung.199:29–31.doi:10.1007/BF01192948.S2CID91784893.
  4. ^Quinde-Axtell Z, Baik BK (December 2006). "Phenolic compounds of barley grain and their implication in food product discoloration".Journal of Agricultural and Food Chemistry.54(26): 9978–84.doi:10.1021/jf060974w.PMID17177530.
  5. ^Mao W, Schuler MA, Berenbaum MR (May 2013)."Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera".Proceedings of the National Academy of Sciences of the United States of America.110(22): 8842–6.Bibcode:2013PNAS..110.8842M.doi:10.1073/pnas.1303884110.PMC3670375.PMID23630255.
  6. ^Strandås C, Kamal-Eldin A, Andersson R, Åman P (October 2008). "Phenolic glucosides in bread containing flaxseed".Food Chemistry.110(4): 997–9.doi:10.1016/j.foodchem.2008.02.088.PMID26047292.
  7. ^"Brettanomyces Monitoring by Analysis of 4-ethylphenol and 4-ethylguaiacol".etslabs.com.Archived fromthe originalon 2008-02-19.
  8. ^Rasmussen S, Rudolph H (1997). "Isolation, purification and characterization of UDP-glucose:cis-p-coumaric acid-β-D-glucosyltransferase from sphagnum fallax ".Phytochemistry.46(3): 449–453.doi:10.1016/S0031-9422(97)00337-3.
  9. ^Chesson A, Stewart CS, Wallace RJ (September 1982)."Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria".Applied and Environmental Microbiology.44(3): 597–603.Bibcode:1982ApEnM..44..597C.doi:10.1128/aem.44.3.597-603.1982.PMC242064.PMID16346090.
  10. ^Wang, Chuanhong; Zhi, Shuang; Liu, Changying; Xu, Fengxiang; Zhao, Aichun; Wang, Xiling; Ren, Yanhong; Li, Zhengang; Yu, Maode (2017). "Characterization of Stilbene Synthase Genes in Mulberry (Morus atropurpurea) and Metabolic Engineering for the Production of Resveratrol inEscherichia coli".Journal of Agricultural and Food Chemistry.65(8): 1659–1668.doi:10.1021/acs.jafc.6b05212.PMID28168876.
  11. ^Hoff WD, Düx P, Hård K, Devreese B, Nugteren-Roodzant IM, Crielaard W, Boelens R, Kaptein R, van Beeumen J, Hellingwerf KJ (November 1994)."Thiol ester-linkedp-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry ".Biochemistry.33(47): 13959–62.doi:10.1021/bi00251a001.PMID7947803.