Jump to content

Quantum simulator

From Wikipedia, the free encyclopedia
In this photograph of a quantum simulator crystal the ionsare fluorescing,indicating the qubits are all in the same state (either "1" or "0" ). Under the right experimental conditions, the ion crystal spontaneously forms this nearly perfect triangularlatticestructure.Credit: Britton/NIST
Trapped ion quantum simulator illustration: The heart of the simulator is a two-dimensional crystal of beryllium ions (blue spheres in the graphic); the outermost electron of each ion is a quantum bit (qubit, red arrows). The ions are confined by a large magnetic field in a device called a Penning trap (not shown). Inside the trap the crystal rotates clockwise.Credit: Britton/NIST

Quantum simulatorspermit the study of aquantum systemin a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specificphysicsproblems.[1][2][3]Quantum simulators may be contrasted with generally programmable "digital"quantum computers,which would be capable of solving a wider class of quantum problems.

Auniversal quantum simulatoris aquantum computerproposed byYuri Maninin 1980[4]andRichard Feynmanin 1982.[5]

Aquantum systemof many particles could be simulated by a quantum computer using a number ofquantum bitssimilar to the number of particles in the original system.[5]This has been extended to much larger classes of quantum systems.[6][7][8][9]

Quantum simulators have been realized on a number of experimental platforms, including systems ofultracold quantum gases,polar molecules, trapped ions, photonic systems, quantum dots, and superconducting circuits.[10]

Solving physics problems[edit]

Many important problems in physics, especiallylow-temperature physicsandmany-body physics,remain poorly understood because the underlyingquantum mechanicsis vastly complex. Conventional computers, including supercomputers, are inadequate for simulating quantum systems with as few as 30 particles because the dimension of the Hilbert space grows exponentially with particle number.[11]Better computational tools are needed to understand and rationally design materials whose properties are believed to depend on the collectivequantum behaviorof hundreds of particles.[2][3]Quantum simulators provide an alternative route to understanding the properties of these systems. These simulators create clean realizations of specific systems of interest, which allows precise realizations of their properties. Precise control over and broad tunability of parameters of the system allows the influence of various parameters to be cleanly disentangled.

Quantum simulators can solve problems which are difficult to simulate on classical computers because they directly exploit quantum properties of real particles. In particular, they exploit a property of quantum mechanics calledsuperposition,wherein aquantum particleis made to be in two distinct states at the same time, for example, aligned and anti-aligned with an external magnetic field. Crucially, simulators also take advantage of a second quantum property calledentanglement,allowing the behavior of even physically well separated particles to be correlated.[2][3][12]

Recently quantum simulators have been used to obtaintime crystals[13][14]andquantum spin liquids.[15][16]

Trapped-ion simulators[edit]

Ion trapbased system forms an ideal setting for simulating interactions in quantum spin models.[17]Atrapped-ionsimulator, built by a team that included theNISTcan engineer and control interactions among hundreds ofquantum bits(qubits).[18]Previous endeavors were unable to go beyond 30 quantum bits. The capability of this simulator is 10 times more than previous devices. It has passed a series of important benchmarking tests that indicate a capability to solve problems in material science that are impossible to model on conventional computers.

The trapped-ion simulator consists of a tiny, single-plane crystal of hundreds ofberyllium ions,less than 1 millimeter in diameter, hovering inside a device called aPenning trap.The outermostelectronof each ion acts as a tinyquantum magnetand is used as a qubit, the quantum equivalent of a “1” or a “0” in a conventional computer. In the benchmarking experiment, physicists used laser beams to cool the ions to near absolute zero. Carefully timed microwave andlaser pulsesthen caused the qubits to interact, mimicking the quantum behavior of materials otherwise very difficult to study in the laboratory. Although the two systems may outwardly appear dissimilar, their behavior is engineered to be mathematically identical. In this way, simulators allow researchers to vary parameters that couldn’t be changed in natural solids, such as atomiclattice spacingand geometry.

Friedenauer et al., adiabatically manipulated 2 spins, showing their separation into ferromagnetic and antiferromagnetic states.[19] Kim et al., extended the trapped ion quantum simulator to 3 spins, with global antiferromagnetic Ising interactions featuring frustration and showing the link between frustration and entanglement[20] and Islam et al., used adiabatic quantum simulation to demonstrate the sharpening of aphase transitionbetween paramagnetic and ferromagnetic ordering as the number of spins increased from 2 to 9.[21] Barreiro et al. created a digital quantum simulator of interacting spins with up to 5 trapped ions by coupling to an open reservoir[22]and Lanyonet al.demonstrated digital quantum simulation with up to 6 ions.[23] Islam, et al., demonstrated adiabatic quantum simulation of the transverse Ising model with variable (long) range interactions with up to 18 trapped ion spins, showing control of the level of spin frustration by adjusting the antiferromagnetic interaction range.[24] Britton, et al. from NIST has experimentally benchmarked Ising interactions in a system of hundreds of qubits for studies of quantum magnetism.[18] Pagano, et al., reported a new cryogenic ion trapping system designed for long time storage of large ion chains demonstrating coherent one and two-qubit operations for chains of up to 44 ions.[25]Joshi, et al., probed the quantum dynamics of 51 individually controlled ions, realizing a long-range interacting spin chain.[26]

Ultracold atom simulators[edit]

Manyultracold atomexperiments are examples of quantum simulators. These include experiments studyingbosonsorfermionsinoptical lattices,the unitary Fermi gas,Rydberg atomarrays inoptical tweezers.A common thread for these experiments is the capability of realizing generic Hamiltonians, such as theHubbardortransverse-field IsingHamiltonian. Major aims of these experiments include identifying low-temperature phases or tracking out-of-equilibrium dynamics for various models, problems which are theoretically and numerically intractable.[27][28]Other experiments have realized condensed matter models in regimes which are difficult or impossible to realize with conventional materials, such as theHaldane modeland theHarper-Hofstadter model.[29][30][31][32][33]

Superconducting qubits[edit]

Quantum simulators using superconducting qubits fall into two main categories. First, so calledquantum annealersdetermine ground states of certain Hamiltonians after an adiabatic ramp. This approach is sometimes calledadiabatic quantum computing.Second, many systems emulate specific Hamiltonians and study their ground state properties,quantum phase transitions,or time dynamics.[34]Several important recent results include the realization of aMott insulatorin a driven-dissipativeBose-Hubbard systemand studies of phase transitions in lattices of superconducting resonators coupled to qubits.[35][36]

See also[edit]

References[edit]

  1. ^Johnson, Tomi H.; Clark, Stephen R.; Jaksch, Dieter (2014). "What is a quantum simulator?".EPJ Quantum Technology.1(10).arXiv:1405.2831.doi:10.1140/epjqt10.S2CID120250321.
  2. ^abc Public DomainThis article incorporatespublic domain materialfromMichael E. Newman.NIST Physicists Benchmark Quantum Simulator with Hundreds of Qubits.National Institute of Standards and Technology.Retrieved2013-02-22.
  3. ^abc Britton, Joseph W.; Sawyer, Brian C.; Keith, Adam C.; Wang, C.-C. Joseph; Freericks, James K.; Uys, Hermann; Biercuk, Michael J.; Bollinger, John J. (2012)."Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins"(PDF).Nature.484(7395): 489–92.arXiv:1204.5789.Bibcode:2012Natur.484..489B.doi:10.1038/nature10981.PMID22538611.S2CID4370334. Note: This manuscript is a contribution of the US National Institute of Standards and Technology and is not subject to US copyright.
  4. ^Manin, Yu. I. (1980).Vychislimoe i nevychislimoe[Computable and Noncomputable] (in Russian). Sov.Radio. pp. 13–15. Archived fromthe originalon 2013-05-10.Retrieved2013-03-04.
  5. ^abFeynman, Richard(1982). "Simulating Physics with Computers".International Journal of Theoretical Physics.21(6–7): 467–488.Bibcode:1982IJTP...21..467F.CiteSeerX10.1.1.45.9310.doi:10.1007/BF02650179.S2CID124545445.
  6. ^Dorit Aharonov; Amnon Ta-Shma (2003). "Adiabatic Quantum State Generation and Statistical Zero Knowledge".arXiv:quant-ph/0301023.
  7. ^Berry, Dominic W.; Graeme Ahokas; Richard Cleve; Sanders, Barry C. (2007). "Efficient quantum algorithms for simulating sparse Hamiltonians".Communications in Mathematical Physics.270(2): 359–371.arXiv:quant-ph/0508139.Bibcode:2007CMaPh.270..359B.doi:10.1007/s00220-006-0150-x.S2CID37923044.
  8. ^Childs, Andrew M. (2010). "On the relationship between continuous- and discrete-time quantum walk".Communications in Mathematical Physics.294(2): 581–603.arXiv:0810.0312.Bibcode:2010CMaPh.294..581C.doi:10.1007/s00220-009-0930-1.S2CID14801066.
  9. ^Kliesch, M.; Barthel, T.; Gogolin, C.; Kastoryano, M.; Eisert, J. (12 September 2011). "Dissipative Quantum Church-Turing Theorem".Physical Review Letters.107(12): 120501.arXiv:1105.3986.Bibcode:2011PhRvL.107l0501K.doi:10.1103/PhysRevLett.107.120501.PMID22026760.S2CID11322270.
  10. ^Nature Physics Insight – Quantum Simulation.Nature.com. April 2012.
  11. ^Lloyd, S. (1996). "Universal quantum simulators".Science.273(5278): 1073–8.Bibcode:1996Sci...273.1073L.doi:10.1126/science.273.5278.1073.PMID8688088.S2CID43496899.
  12. ^Cirac, J. Ignacio; Zoller, Peter (2012)."Goals and opportunities in quantum simulation"(PDF).Nature Physics.8(4): 264–266.Bibcode:2012NatPh...8..264C.doi:10.1038/nphys2275.S2CID109930964.[permanent dead link]
  13. ^Kyprianidis, A.; Machado, F.; Morong, W.; Becker, P.; Collins, K. S.; Else, D. V.; Feng, L.; Hess, P. W.; Nayak, C.; Pagano, G.; Yao, N. Y. (2021-06-11)."Observation of a prethermal discrete time crystal".Science.372(6547): 1192–1196.arXiv:2102.01695.Bibcode:2021Sci...372.1192K.doi:10.1126/science.abg8102.ISSN0036-8075.PMID34112691.S2CID231786633.
  14. ^S, Robert; ers; Berkeley, U. C. (2021-11-10)."Creating Time Crystals Using New Quantum Computing Architectures".SciTechDaily.Retrieved2021-12-27.
  15. ^Semeghini, G.; Levine, H.; Keesling, A.; Ebadi, S.; Wang, T. T.; Bluvstein, D.; Verresen, R.; Pichler, H.; Kalinowski, M.; Samajdar, R.; Omran, A. (2021-12-03)."Probing topological spin liquids on a programmable quantum simulator".Science.374(6572): 1242–1247.arXiv:2104.04119.Bibcode:2021Sci...374.1242S.doi:10.1126/science.abi8794.PMID34855494.S2CID233204440.
  16. ^Wood, Charlie (2021-12-02)."Quantum Simulators Create a Totally New Phase of Matter".Quanta Magazine.Retrieved2022-03-11.
  17. ^Monroe, C; et, al (2021). "Programmable quantum simulations of spin systems with trapped ions".Rev. Mod. Phys.93(4): 025001.arXiv:1912.07845.Bibcode:2021RvMP...93b5001M.doi:10.1103/RevModPhys.93.025001.ISSN0034-6861.S2CID209386771.
  18. ^abBritton, Joseph W.; Sawyer, Brian C.; Keith, Adam C.; Wang, C.-C. Joseph; Freericks, James K.; Uys, Hermann; Biercuk, Michael J.; Bollinger, John J. (25 April 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins".Nature.484(7395): 489–492.arXiv:1204.5789.Bibcode:2012Natur.484..489B.doi:10.1038/nature10981.PMID22538611.S2CID4370334.
  19. ^Friedenauer, A.; Schmitz, H.; Glueckert, J. T.; Porras, D.; Schaetz, T. (27 July 2008)."Simulating a quantum magnet with trapped ions".Nature Physics.4(10): 757–761.Bibcode:2008NatPh...4..757F.doi:10.1038/nphys1032.
  20. ^Kim, K.; Chang, M.-S.; Korenblit, S.; Islam, R.;Edwards, E. E.;Freericks, J. K.; Lin, G.-D.; Duan, L.-M.; Monroe, C. (June 2010). "Quantum simulation of frustrated Ising spins with trapped ions".Nature.465(7298): 590–593.Bibcode:2010Natur.465..590K.doi:10.1038/nature09071.PMID20520708.S2CID2479652.
  21. ^Islam, R.;Edwards, E.E.;Kim, K.; Korenblit, S.; Noh, C.; Carmichael, H.; Lin, G.-D.; Duan, L.-M.; Joseph Wang, C.-C.; Freericks, J.K.; Monroe, C. (5 July 2011). "Onset of a quantum phase transition with a trapped ion quantum simulator".Nature Communications.2(1): 377.arXiv:1103.2400.Bibcode:2011NatCo...2..377I.doi:10.1038/ncomms1374.PMID21730958.S2CID33407.
  22. ^Barreiro, Julio T.; Müller, Markus; Schindler, Philipp; Nigg, Daniel; Monz, Thomas; Chwalla, Michael; Hennrich, Markus; Roos, Christian F.; Zoller, Peter; Blatt, Rainer (23 February 2011). "An open-system quantum simulator with trapped ions".Nature.470(7335): 486–491.arXiv:1104.1146.Bibcode:2011Natur.470..486B.doi:10.1038/nature09801.PMID21350481.S2CID4359894.
  23. ^Lanyon, B. P.; Hempel, C.; Nigg, D.; Muller, M.; Gerritsma, R.; Zahringer, F.; Schindler, P.; Barreiro, J. T.; Rambach, M.; Kirchmair, G.; Hennrich, M.; Zoller, P.; Blatt, R.; Roos, C. F. (1 September 2011). "Universal Digital Quantum Simulation with Trapped Ions".Science.334(6052): 57–61.arXiv:1109.1512.Bibcode:2011Sci...334...57L.doi:10.1126/science.1208001.PMID21885735.S2CID206535076.
  24. ^Islam, R.; Senko, C.; Campbell, W. C.; Korenblit, S.; Smith, J.; Lee, A.;Edwards, E. E.;Wang, C.- C. J.; Freericks, J. K.; Monroe, C. (2 May 2013). "Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator".Science.340(6132): 583–587.arXiv:1210.0142.Bibcode:2013Sci...340..583I.doi:10.1126/science.1232296.PMID23641112.S2CID14692151.
  25. ^Pagano, G; Hess, P W; Kaplan, H B; Tan, W L; Richerme, P; Becker, P; Kyprianidis, A; Zhang, J; Birckelbaw, E; Hernandez, M R; Wu, Y; Monroe, C (9 October 2018). "Cryogenic trapped-ion system for large scale quantum simulation".Quantum Science and Technology.4(1): 014004.arXiv:1802.03118.doi:10.1088/2058-9565/aae0fe.S2CID54518534.
  26. ^Joshi, M.K.; Kranzl, F.; Schuckert, A.; Lovas, I.; Maier, C.; Blatt, R.; Knap, M.; Roos, C.F. (13 May 2022)."Observing emergent hydrodynamics in a long-range quantum magnet".Science.6594(376): 720–724.arXiv:2107.00033.Bibcode:2022Sci...376..720J.doi:10.1126/science.abk2400.PMID35549407.S2CID235694285.Retrieved13 May2022.
  27. ^Bloch, Immanuel; Dalibard, Jean; Nascimbene, Sylvain (2012). "Quantum simulations with ultracold quantum gases".Nature Physics.8(4): 267–276.Bibcode:2012NatPh...8..267B.doi:10.1038/nphys2259.S2CID17023076.
  28. ^Gross, Christian; Bloch, Immanuel (September 8, 2017)."Quantum simulations with ultracold atoms in optical lattices".Nature.357(6355): 995–1001.Bibcode:2017Sci...357..995G.doi:10.1126/science.aal3837.PMID28883070.
  29. ^Jotzu, Gregor; Messer, Michael; Desbuquois, Rémi; Lebrat, Martin; Uehlinger, Thomas; Greif, Daniel; Esslinger, Tilman (13 November 2014). "Experimental realization of the topological Haldane model with ultracold fermions".Nature.515(7526): 237–240.arXiv:1406.7874.Bibcode:2014Natur.515..237J.doi:10.1038/nature13915.PMID25391960.S2CID204898338.
  30. ^Simon, Jonathan (13 November 2014)."Magnetic fields without magnetic fields".Nature.515(7526): 202–203.doi:10.1038/515202a.PMID25391956.
  31. ^Zhang, Dan-Wei; Zhu, Yan-Qing; Zhao, Y. X.; Yan, Hui; Zhu, Shi-Liang (29 March 2019). "Topological quantum matter with cold atoms".Advances in Physics.67(4): 253–402.arXiv:1810.09228.doi:10.1080/00018732.2019.1594094.S2CID91184189.
  32. ^Alberti, Andrea; Robens, Carsten; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter (2016-05-06)."Super-resolution microscopy of single atoms in optical lattices".New Journal of Physics.18(5): 053010.arXiv:1512.07329.Bibcode:2016NJPh...18e3010A.doi:10.1088/1367-2630/18/5/053010.ISSN1367-2630.
  33. ^Robens, Carsten; Brakhane, Stefan; Meschede, Dieter; Alberti, A. (2016-09-18),"Quantum Walks with Neutral Atoms: Quantum Interference Effects of One and Two Particles",Laser Spectroscopy,WORLD SCIENTIFIC, pp. 1–15,arXiv:1511.03569,doi:10.1142/9789813200616_0001,ISBN978-981-320-060-9,S2CID118452312,retrieved2020-05-25
  34. ^Paraoanu, G. S. (4 April 2014). "Recent Progress in Quantum Simulation Using Superconducting Circuits".Journal of Low Temperature Physics.175(5–6): 633–654.arXiv:1402.1388.Bibcode:2014JLTP..175..633P.doi:10.1007/s10909-014-1175-8.S2CID119276238.
  35. ^Ma, Ruichao; Saxberg, Brendan; Owens, Clai; Leung, Nelson; Lu, Yao; Simon, Jonathan; Schuster, David I. (6 February 2019). "A dissipatively stabilized Mott insulator of photons".Nature.566(7742): 51–57.arXiv:1807.11342.Bibcode:2019Natur.566...51M.doi:10.1038/s41586-019-0897-9.PMID30728523.S2CID59606678.
  36. ^Fitzpatrick, Mattias; Sundaresan, Neereja M.; Li, Andy C. Y.; Koch, Jens; Houck, Andrew A. (10 February 2017). "Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice".Physical Review X.7(1): 011016.arXiv:1607.06895.Bibcode:2017PhRvX...7a1016F.doi:10.1103/PhysRevX.7.011016.S2CID3550701.

External links[edit]