Jump to content

Quinone methide

From Wikipedia, the free encyclopedia
Quinone methide
Identifiers
3D model (JSmol)
1922177
ChEBI
UNII
  • o-: InChI=1S/C7H6O/c1-6-4-2-3-5-7(6)8/h2-5H,1H2
    Key: NSDWWGAIPUNJAX-UHFFFAOYSA-N
  • p-: InChI=1S/C7H6O/c1-6-2-4-7(8)5-3-6/h2-5H,1H2
    Key: OJPNKYLDSDFUPG-UHFFFAOYSA-N
  • o-: C=C1C=CC=CC1=O
  • p-: C=C1C=CC(=O)C=C1
Properties
C7H6O
Molar mass 106.124g·mol−1
Except where otherwise noted, data are given for materials in theirstandard state(at 25 °C [77 °F], 100 kPa).

Aquinone methideis a type ofconjugatedorganic compoundthat contain acyclohexadienewith acarbonyland an exocyclicmethylideneor extended alkene unit. It is analogous to aquinone,but having one of thedouble bondedoxygens replaced with a carbon. The carbonyl and methylidene are usually oriented eitherorthoorparato each other. There are some examples of transient syntheticmetaquinone methides.

Properties

[edit]

Quinone methides arecross-conjugatedrather thanaromatic.Nucleophilic addition at the exo-cyclic double bond will result in rearomatisation, making such reactions highly favourable. As a result, quinone methides are excellent, electrophilicMichael acceptors,react quickly withnucleophilesand can be easily reduced. They are able to act asradical scavengersvia a similar process, a behaviour exploited by certainpolymerisation inhibitors.Quinone methides are morepolarthan quinones, and therefore morechemically reactive.Simple unhindered quinone methides are short livedreactive intermediatesthat are not stable enough to be isolated under normal circumstances, they willtrimerisein the absence of nucleophiles.[1]Sterically hindered quinone methides can be sufficiently stable to be isolated, with some examples being commercially available.

Preparation

[edit]

Quinone methides are often prepared by oxidation of the corresponding ortho or paracresol.

Quinone methides can be produced in aqueous solution by photochemical dehydration of o-hydroxybenzyl alcohols (i.e.salicyl alcohol).

Occurrence and applications

[edit]

Quinones methides are commonly invoked inbiochemistry,but are rarely observed as long-lived intermediates.

Biosynthesis of dehydroglycine

[edit]

Quinone methide itself arises by the degradation oftyrosine,leading ultimately top-cresol.[2]Various quinone methides are directly involved in the process oflignification(creation of complexligninpolymers) in plants.[3]

Quinone methides have been implicated as the ultimatecytotoxinsresponsible for the effects of such agents asantitumordrugs,antibiotics,and DNAalkylators.[4]Oxidation to a reactive quinone methide is the mechanistic basis of many phenolic anti-cancer drugs.

Proposed sequence of reactions withN-acetyldopamineas substrate resulting insclerotization(formation of exoskeletons of arthropods. The middle step involving conversion of the ortho quinone to quinone methide, is catalyzed by the enzyme quinone isomerase.[5]<

Celastrolis atriterpenoidquinone methide isolated fromTripterygium wilfordii(Thunder of God vine) andCelastrus regeliithat exhibitsantioxidant(15 times the potency of α-tocopherol),[6]anti-inflammatory,[7]anticancer,[8][9][10][11]and insecticidal[12]activities.

Pristimerin, the methylesterof celasterol, is a triterpenoid quinone methide isolated fromMaytenus heterophyllathat displays antitumor and antiviral[13]activities. Pristimerin has also been found to have a contraceptive effect due to its inhibiting effect on the calcium channel of sperm (CatSper).[14]

Maytenoquinone

Taxodoneand its oxidized rearrangement product, taxodione, arediterpenoidquinone methides found inTaxodium distichum(bald cypress),Rosmarinus officinalis(rosemary), severalSalviaspecies and other plants, that displayanticancer,[15][16][17]antibacterial,[18][19][20]antioxidant,[21]antifungal,[22]insecticide,[23]and antifeedant[24]activities.

Maytenoquinone, an isomer of taxodione, is a biologically active quinone methide found inMaytenus dispermus.[25]

Kendomycinis anantitumorantibacterialquinone methidemacrolidefirst isolated from the bacteriumStreptomyces violaceoruber.[26]It has potent activity as anendothelin receptorantagonistand anti-osteoporosisagent.[27]

Elansolid A3 is a quinone methide from the bacteriumChitinophaga sanctithat displays antibiotic activity.[28]Antibacterial quinone methides, 20-epi-isoiguesterinol, 6-oxoisoiguesterin, isoiguesterin and isoiguesterinol were found inSalacia madagascariensis.[29]Quinone methides tingenone and netzahualcoyonol were isolated fromSalacia petenensis.[30]Nortriterpenoid quinone methide amazoquinone and (7S, 8S)-7-hydroxy-7,8-dihydro-tingenone were isolated fromMaytenus amazonica.[31]An antimicrobial quinone methide, 15 alpha-hydroxypristimerin, was isolated from a South American medicinal plant,Maytenus scutioides.[32]

Quinone dimethides

[edit]

Aquinone dimethide(or "xylylene" ) is a compound with the formula C6H4(=CH2)2.Thus they are related to quinonemonomethides (the topic of this article) by replacing the keto group withmethylidene.A well studied example istetracyanoquinodimethane.

References

[edit]
  1. ^Cavitt, S. B.; R., H. Sarrafizadeh; Gardner, P. D. (April 1962). "The Structure of o-Quinone Methide Trimer".The Journal of Organic Chemistry.27(4): 1211–1216.doi:10.1021/jo01051a021.
  2. ^Stich, T. A.; Myers, W. K.; Britt, R. D., "Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes", Acc. Chem. Res. 2014, 47, 2235-2243.
  3. ^Quinone Methides in Lignification
  4. ^Wang P, Song Y, Zhang L, He H, Zhou X (2005). "Quinone methide derivatives: important intermediates to DNA alkylating and DNA cross-linking actions".Curr Med Chem.12(24): 2893–2913.doi:10.2174/092986705774454724.PMID16305478.
  5. ^Andersen, Svend Olav (2010). "Insect Cuticular Sclerotization: A Review".Insect Biochemistry and Molecular Biology.40(3): 166–178.doi:10.1016/j.ibmb.2009.10.007.PMID19932179.
  6. ^Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C (2001). "Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease".Prog Neuropsychopharmacol Biol Psychiatry.25(7): 1341–1357.doi:10.1016/S0278-5846(01)00192-0.PMID11513350.S2CID21569585.
  7. ^Kim DH, Shin EK, Kim YH, Lee BW, Jun JG, Park JH, Kim JK (2009). "Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii".Eur J Clin Invest.39(9): 819–827.doi:10.1111/j.1365-2362.2009.02186.x.PMID19549173.S2CID205291261.
  8. ^Lee JH, Choi KJ, Seo WD, Jang SY, Kim M, Lee BW, Kim JY, Kang S, Park KH, Lee YS, Bae S (2011)."Enhancement of radiation sensitivity in lung cancer cells by celastrol is mediated by inhibition of Hsp90".Int J Mol Med.27(3): 441–446.doi:10.3892/ijmm.2011.601.PMID21249311.
  9. ^Tiedemann; et al. (2009)."Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo".Blood.113(17): 4027–37.doi:10.1182/blood-2008-09-179796.PMC3952546.PMID19096011.
  10. ^Zhu H, Liu XW, Cai TY, Cao J, Tu CX, Lu W, He QJ, Yang B (2010). "Celastrol acts as a potent antimetastatic agent targeting beta1 integrin and inhibiting cell-extracellular matrix adhesion, in part via the p38 mitogen-activated protein kinase pathway".J Pharmacol Exp Ther.334(2): 489–499.doi:10.1124/jpet.110.165654.PMID20472666.S2CID25854329.
  11. ^Byun; et al. (2009). "Reactive oxygen species-dependent activation of Bax and Poly(ADP)-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid Pristimerin in human cervical cancer cells".Mol. Pharmacol.76(4): 734–44.doi:10.1124/mol.109.056259.PMID19574249.S2CID6541041.
  12. ^Avilla J, Teixidò A, Velázquez C, Alvarenga N, Ferro E, Canela R (2000). "Insecticidal activity of Maytenus species (Celastraceae) nortriterpene quinone methides against codling moth, Cydia pomonella (L.) (Lepidoptera: tortricidae)".Journal of Agricultural and Food Chemistry.48(1): 88–92.doi:10.1021/jf990008w.PMID10637057.
  13. ^Murayama T, Eizuru Y, Yamada R, Sadanari H, Matsubara K, Rukung G, Tolo FM, Mungai GM, Kofi-Tsekpo M (2007). "Anticytomegalovirus activity of pristimerin, a triterpenoid quinone methide isolated from Maytenus heterophylla (Eckl. & Zeyh.)".Antivir Chem Chemother.18(3): 133–139.doi:10.1177/095632020701800303.PMID17626597.S2CID22381089.
  14. ^Nadja Mannowetza; Melissa R. Millera; Polina V. Lishko (2017)."Regulation of the sperm calcium channel CatSper by endogenous steroids and plant triterpenoids".Proceedings of the National Academy of Sciences of the United States of America.114(22): 5743–5748.Bibcode:2017PNAS..114.5743M.doi:10.1073/pnas.1700367114.PMC5465908.PMID28507119.
  15. ^Kupchan, S. M.; Karim, A; Marcks, C. (1968). "Tumor inhibitors. XXXIV. Taxodione and taxodone, two novel diterpenoid quinone methide tumor inhibitors from Taxodium distichum".J Am Chem Soc.90(21): 5923–4.doi:10.1021/ja01023a061.PMID5679178.
  16. ^Zaghloul AM, Gohar AA, Naiem ZA, Abdel Bar FM (2008)."Taxodione, a DNA-binding compound from Taxodium distichum L. (Rich.)".Z Naturforsch C.63(5–6): 355–360.doi:10.1515/znc-2008-5-608.PMID18669020.S2CID23956301.
  17. ^Ayhan Ulubelen,Gülaçti Topçu, Hee-Byung Chai and John M. Pezzuto (1999). "Cytotoxic Activity of Diterpenoids Isolated from Salvia hypargeia".Pharmaceutical Biology.37(2): 148–151.doi:10.1076/phbi.37.2.148.6082.{{cite journal}}:CS1 maint: multiple names: authors list (link)
  18. ^Vivek K. Bajpai & Sun Chul Kan (2010). "Antibacterial abietane-type diterpenoid, taxodone fromMetasequoia glyptostroboidesMiki ex Hu ".Journal of Biosciences.35(4): 533–538.doi:10.1007/s12038-010-0061-z.PMID21289435.S2CID25656295.
  19. ^Vivek K. Bajpai; Minkyun Na; Sun Chul Kang (2010). "The role of bioactive substances in controlling foodborne pathogens derived fromMetasequoia glyptostroboidesMiki ex Hu ".Food and Chemical Toxicology.48(7): 1945–1949.doi:10.1016/j.fct.2010.04.041.PMID20435080.
  20. ^Tada M, Kurabe J, Yoshida T, Ohkanda T, Matsumoto Y (2010)."Syntheses and antibacterial activities of diterpene catechol derivatives with abietane, totarane and podocarpane skeletons against methicillin-resistant Staphylococcus aureus and Propionibacterium acnes".Chem Pharm Bull.58(6): 818–824.doi:10.1248/cpb.58.818.PMID20522992.
  21. ^Ufuk Kolak; Ahmed Kabouche; Mehmet Öztürk; Zahia Kabouche; Gülaçtl Topçu;Ayhan Ulubelen(2009). "Antioxidant diterpenoids from the roots ofSalvia barrelieri".Phytochemical Analysis.20(4): 320–327.Bibcode:2009PChAn..20..320K.doi:10.1002/pca.1130.PMID19402189.
  22. ^Norihisa Kusumoto; Tatsuya Ashitani; Tetsuya Murayama; Koichi Ogiyama; Koetsu Takahashi (2010). "Antifungal Abietane-Type Diterpenes from the Cones ofTaxodium distichumRich ".Journal of Chemical Ecology.36(12): 1381–1386.doi:10.1007/s10886-010-9875-2.PMID21072573.S2CID11861719.
  23. ^Norihisa Kusumoto; Tatsuya Ashitani; Yuichi Hayasaka; Tetsuya Murayama; Koichi Ogiyama; Koetsu Takahashi (2009). "Antitermitic Activities of Abietane-type Diterpenes fromTaxodium distichumCones ".Journal of Chemical Ecology.35(6): 635–642.doi:10.1007/s10886-009-9646-0.PMID19475449.S2CID42622420.
  24. ^M. C. Ballesta-Acosta1, M. J. Pascual-Villalobos and B. Rodríguez (2008)."Short communication. The antifeedant activity of natural plant products towards the larvae of Spodoptera littoralis".Spanish Journal of Agricultural Research.6(1): 85–91.doi:10.5424/sjar/2008061-304.{{cite journal}}:CS1 maint: numeric names: authors list (link)
  25. ^J. D. Martín (1973). "New diterpenoids extractives of Maytenus dispermus".Tetrahedron.29(17): 2553–2559.doi:10.1016/0040-4020(73)80172-3.
  26. ^H B Bode & A Zeeck (2000). "Structure and biosynthesis of kendomycin, a carbocyclic ansa-compound from Streptomyces".J Chem Soc Perkin Trans 1.323(3): 323–328.doi:10.1039/a908387a.
  27. ^Burke Research GroupUniversity of Wisconsin
  28. ^Jansen R, Gerth K, Steinmetz H, Reinecke S, Kessler W, Kirschning A, Müller R (2011). "Elansolid A3, a Unique p-Quinone Methide Antibiotic from Chitinophaga sancti".Chem. Eur. J.17(28): 7739–44.doi:10.1002/chem.201100457.PMID21626585.
  29. ^Thiem DA, Sneden AT, Khan SI, Tekwani BL (2005). "Bisnortriterpenes from Salacia madagascariensis".J Nat Prod.68(2): 251–254.doi:10.1021/np0497088.PMID15730255.
  30. ^Setzer WN, Holland MT, Bozeman CA, Rozmus GF, Setzer MC, Moriarity DM, Reeb S, Vogler B, Bates RB, Haber WA (2001). "Isolation and frontier molecular orbital investigation of bioactive quinone-methide triterpenoids from the bark of Salacia petenensis".Planta Med.67(1): 65–69.doi:10.1055/s-2001-10879.PMID11270725.
  31. ^Chávez H, Estévez-Braun A, Ravelo AG, González AG (1999). "New phenolic and quinone-methide triterpenes from Maytenus amazonica".J Nat Prod.62(3): 434–436.doi:10.1021/np980412+.PMID10096852.
  32. ^González AG, Alvarenga NL, Bazzocchi IL, Ravelo AG, Moujir L (1998). "A new bioactive norquinone-methide triterpene from Maytenus scutioides".Planta Med.64(8): 767–771.doi:10.1055/s-2006-957581.PMID10075545.S2CID11522064.
[edit]