Jump to content

Striking clock

From Wikipedia, the free encyclopedia
The Elizabeth Tower of thePalace of WestminsterinLondon,commonly referred to asBig Ben,is a famous striking clock.

Astriking clockis aclockthat sounds thehoursaudibly on abell,gong,or other audible device. In 12-hour striking, used most commonly in striking clocks today, the clock strikes once at 1:00 am, twice at 2:00 am, continuing in this way up to twelve times at 12:00 mid-day, then starts again, striking once at 1:00 pm, twice at 2:00 pm, up to twelve times at 12:00 midnight.

The striking feature of clocks was originally more important than theirclock faces;the earliest clocks struck the hours, but had no dials to enable the time to be read.[1]The development of mechanical clocks in 12th centuryEuropewas motivated by the need to ring bells upon thecanonical hoursto call the community to prayer. The earliest known mechanical clocks were large striking clocks installed in towers in monasteries or public squares, so that their bells could be heard far away. Though an early striking clock inSyriawas a 12-hour clock, many early clocks struck up to 24 strokes, particularly inItaly,where the 24-hour clock, keeping Italianhours,was widely used in the 14th and 15th centuries. As the modern 12-hour clock became more widespread, particularly inGreat BritainandNorthern Europe,12-hour striking became more widespread and eventually became the standard. In addition to striking on the hour, many striking clocks playsequences of chimeson the quarter-hours. The most common sequence isWestminster Quarters.

Today the time-disseminating function of clock striking is almost no longer needed, and striking clocks are kept for historical, traditional, and aesthetic reasons. Historicclock towersin towns, universities, and religious institutions worldwide still strike the hours, famous examples beingBig BeninLondon,thePeace TowerinOttawa,and theKremlin ClockinMoscow.Home striking clocks, such asmantel clocks,cuckoo clocks,grandfather clocksandbracket clocksare also very common.

A typical striking clock will have twogear trains,because a striking clock must add astriking trainthat operates the mechanism that rings the bell in addition to thetimekeeping trainthat measures the passage oftime.

Passing strike[edit]

TheKremlin Clockon theMoscow Kremlinrings in 2012.

The most basic sort of striking clock simply sounds a bell once every hour; this is called apassing strikeclock. Passing strike was simple to implement mechanically; all that must be done is to attach acamto a shaft that rotates once per hour; the cam raises and then lets a hammer fall that strikes the bell. The firsttower clocks,mounted in towers in cathedrals, abbeys, and monasteries to call the community to prayer, which originated inMedievalEuropebefore the invention of themechanical clockin the 13th century, werewater clockswhich used the passing strike mechanism; they rang once for eachcanonical hour.

Before European clocks, China developed a water-driven astronomical clockwork technology, starting with the first century AD scientistZhang Heng(78–139). TheTang dynastyChineseBuddhist monkand inventorYi Xing(683–727) created a rotatingcelestial globethat was turned by a water clock mechanism driven by awaterwheelThis featured two wooden gear jacks on itshorizon surfacewith a drum and a bell, the bell being struck automatically every hour and the drum being struck automatically every quarter-hour.[2]It is recorded thatConfucianstudents in the year 730 were required to write an essay on this device in order to pass theImperial examinations.[3]The use of clock jacks to sound the hours were used in laterclock towersofSong dynastyChina, such as those designed byZhang SixunandSu Songin the 10th and 11th centuries, respectively.[4]

A striking clock outside of China was the clock tower near theUmayyad MosqueinDamascus,Syria,which struck once every hour. It is the subject of a book,On the Construction of Clocks and their Use(1203), byRiḍwān ibn al-Sāʿātī,the son of a clockmaker.[5]TheFlorentinewriterDante Alighierimade a reference to the gear works of striking clocks in 1319.[6]One of the older clock towers still standing isSt Mark's ClocktowerinSt Mark's Square,Venice.TheSt Mark's Clockwas assembled in 1493, by the famous clockmaker Gian Carlo Rainieri fromReggio Emilia,where his father Gian Paolo Rainieri had already constructed another famous device in 1481. In 1497, Simone Campanato moulded the great bell, which was put on the top of the tower where it is alternately beaten by theDue Mori(TwoMoors), two bronze statues handling a hammer.

Counting the hours[edit]

During the great wave oftower clockbuilding in 14th-centuryEurope,around the time of the invention of the mechanical clock itself, striking clocks were built that struck the bell multiple times, to count out the hours. The clock of the Beata Vergine (laterSan Gottardo) inMilan,built around 1330, was one of the earliest recorded that struck the hours. In 1335,Galvano Fiammawrote:[7]

There is there a wonderful clock, because there is a very large clapper which strikes a bell 24 times according to the 24 hours of the day and night, and thus at the first hour of the night gives one sound, at the second two strokes, and so distinguishes one hour from another, which is of greatest use to men of every degree.

The astronomical clock designed byRichard of Wallingfordin 1327 and built around 1354, also struck 24 hours.

Some rare clocks use a form of striking known as "Roman Striking" invented byJoseph Knibb,in which a large bell or lower tone is sounded to represent "five", and a small bell or high tone is sounded to represent "one".[8]For example, four o'clock would be sounded as a high tone followed by a low tone, whereas the hour of eleven o'clock would be sounded by two low tones followed by a high tone. The purpose is to conserve the power of the striking train. For example, "VII" would be a total of three strikes instead of seven, and "XII" would be four strikes instead of twelve.[8]Clocks using this type of striking usually represent four o'clock on the dial with an "IV" rather than the more common "IIII",[8][9][10]so that the Roman numerals correspond with the sequence of strikes on the high and low bells.[8] One small table clock of this type sold from theGeorge Danielscollection atSotheby'son 6 November 2012 for £1,273,250.[11]

Countwheel[edit]

Countwheel striking: the unequally spaced notches in the countwheel (A) regulate the number of times the bell is struck.

Two mechanisms have been devised byclockmakersto enable striking clocks to correctly count out the hours. The earlier, which appeared in the first striking clocks in the 14th century, is called "countwheel striking". This uses a wheel that contains notches on its side, spaced by unequal, increasingarcsegments. This countwheel governs the rotation of the striking train. When the striking train is released by the timekeeping train, a lever is lifted from a notch on the countwheel; the uneven notches allow the striking train to move only far enough to sound the correct number of times, after which the lever falls back into the next notch and stops the striking train from turning further.

The countwheel has the disadvantage of being entirely independent of the timekeeping train; if the striking train winds down, or for some other reason the clock fails to strike, the countwheel will become out of synch with the time shown by the hands, and must be resynchronized by manually releasing the striking train until it moves around to the correct position.

Rack striking[edit]

In the late seventeenth century,rack strikingwas invented. Rack striking is so called because it is regulated by arack and snailmechanism. The distance arackis allowed to fall is determined by a snail-shaped cam, thereby regulating the number of times the bell is allowed to sound. There was a misconception during the 20th century that the rack and snail mechanism was invented by British clergymanEdward Barlowin 1675–6.[1]In fact, the inventor is unknown.[12]

The snail-shaped cam is a part of the timekeeping train that revolves every twelve hours; often the snail is attached to the same pipe on which the hour hand is mounted. The diameter of the cam is largest at the one o'clock position, permitting the rack to move only a short distance, after which the striking train is stopped; it is smallest at the 12 o'clock position, which allows the rack to move the farthest. Striking stops when the last tooth of the rack has been taken up by the gathering pallet.

Because the number of strikes on the hour is determined by the position of the snail which rotates in tandem with the hour hand, rack striking seldom becomes desynchronized. Rack striking also made possible therepeating clock,which can be made to repeat the last hour struck by pressing a button. Rack striking became the standard mechanism used in striking clocks down to the present.[13]

Parts of mechanism[edit]

Rack striking: the snail-shaped cam (N) makes the clock sound the correct number of times by checking the fall of the rack (M).

All hour striking mechanisms have these parts.[14]The letters below refer to the diagram.

  • Power source– This is usually identical to the device that powers the clock's timekeeping mechanism: in weight driven clocks it is a second weight on a cord (P), in spring driven clocks it is anothermainspring.Although older one-day (30-hour) clocks often used a single weight or mainspring to drive both the timekeeping and striking trains, better clocks used a separate power source, because the striking mechanism consumes a lot of power and often has to be wound more frequently, and also to isolate the delicate timekeeping train from the large movements that occur in the striking train. Winding a striking clock requires winding both the timing and striking parts separately.
  • Striking train– This is agear train(G,H) that scales down the force of the power source and transmits it to the hammer mechanism which rings the gong. In antique clocks, to reduce the manufacturing cost, it was often exactly the same as thetiming trainthat ran the clock's timekeeping part, and installed parallel to it, on the left side as one faces the clock.
  • Regulator– A device to prevent the striking train from running too fast, and control the speed of striking. If it wasn't present, the striking train when released would run out of control under the force of the spring or weight. In most clocks it is a simplefly fan(orfan fly) (K), a flat piece of sheet metal mounted on the fastest turning gear shaft. When the striking train turns, this beats the air, and the air friction limits the speed of the train. Striking watches and some modern clocks use acentrifugal governorinstead.
  • Count mechanism– This is the critical part mentioned above, that releases the striking train at the proper time and counts out the proper number of strikes. It is the only part of the striking mechanism that is attached to the clock's timekeeping works. Virtually all modern clocks use the rack and snail. The snail (N) is usually mounted on the clock's center wheel shaft, which turns once every 12 hours. There is also a release lever (L) which on the hour releases the rack and allows the timing train to turn.
  • Hammer and gong– The hammer lever (F) is actuated by pins or teeth (G) on one of the striking train wheels. As the wheel turns the pin lifts the hammer lever, until the lever slips off the pin, allowing the hammer to drop, hitting thegong(E). Early house clocks used traditional hemispherical shapedbells.Later house clocks used gongs made oflong steel tubes or bars,which have a sound more like largechurch bells.Mantel and other small clocks use thick hardened steel wires, which are coiled into a spiral to save space.

Clocks that have more elaborate functions than just striking the hours, such as chiming the quarter hours, or playing tunes, are called "chiming clocks" by clockmakers. The additional functions are usually run by a second complete striking mechanism separate from the (hour) striking train, called the "chiming train". These clocks have three weights or mainsprings, to power the timing train, striking train, and chiming train.

How it works[edit]

This describes how the rack and snail striking mechanism works. The labels refer to the drawing above.

The release lever(L)holds the rack(M)up when the clock is not striking. On the shaft of the minute hand (not shown), which rotates once per hour, there is a projection. As the change of the hour approaches, this projection slowly lifts the release lever, allowing the rack to fall until its point rests on the snail(N).The amount the rack can fall, and thus the number of strikes, is determined by the position of the snail. Exactly on the hour the striking train(G, H, K)is released and begins to turn. As it turns, the pins(G)repeatedly lift the hammer(F)and allow it to drop, ringing the gong(E).The gear ratios are arranged so that the gear wheel(H)makes one revolution each strike. A small pin(S)on this wheel engages the rack teeth, lifting the rack up by one tooth each turn. When the rack reaches the end of its teeth it stops the striking train from turning (using a mechanism not shown in the diagram, in such a way that gear(H)is held stationary with the pin(S)not engaging the rack, so that the rack is able to fall freely again on the next hour). So the number of strikes is equal to the number of teeth of the rack which are used, which depends on the position of the snail.

Types of striking clocks[edit]

ACuckoo clockstriking the 8th hour with mechanicalautomatonand the sound of aCuckoo's call to mark the hours.

Specialized types of striking clocks:

  • Chiming clock – Strikes on the hours and chimes on the quarter hours, often playing fragments of a tune such asWestminster Quarters.
  • Repeater– a striking clock which can repeat the strikes at the push of a lever, for telling the time in the dark.
  • Musical clock– plays tunes on amusic boxin addition to counting the time
  • Automaton clock– with mechanically animated figures that periodically perform various displays, usually as a part of the clock striking the hours.
    • Cuckoo clock– a specific type of automaton clock which originated inGermany,which displays an animated bird and plays imitationbirdcallsin addition to striking on a bell or gong.
  • Ship's bell clock– strikes theship's bellsinstead of the hours.

Somequartz clocksalso contain speakers and sound chips that electronically imitate the sounds of a chiming or striking clock. Other quartz striking clocks use electrical power to strike bells or gongs.

See also[edit]

Notes[edit]

  1. ^abMilham 1945,p. 197.
  2. ^Needham 1986,pp. 473–475.
  3. ^Needham 1986,p. 475.
  4. ^Needham 1986,p. 165.
  5. ^Donald Routledge Hill(1991), "Arabic Mechanical Engineering: Survey of the Historical Sources",Arabic Sciences and Philosophy,1(2): 167–186 [180],doi:10.1017/S0957423900001478,S2CID145180608
  6. ^Needham 1986,p. 445.
  7. ^Boardman, Pete."Why do clocks show 12 hours?".History.24 Hour Clocks and Watches.RetrievedApril 23,2008.
  8. ^abcdSymonds 1947,p. 47.
  9. ^British Horological Institute,Workshop on Roman Numeral Clock Faces,1999
  10. ^FAQ: Roman IIII vs. IV on Clock DialsArchived2015-03-25 at theWayback Machine
  11. ^"Sale L12313 The George Daniels Horological Collection"(PDF).Sotheby's.
  12. ^Horological Journal, September 2011, pages 408-412
  13. ^"Rack Striking".Encyclopedia of Antiques.Old and Sold Antique Marketplace.Retrieved2008-04-20.
  14. ^Milham 1945,pp. 202–204.

Sources and further reading[edit]