Jump to content

TACK

From Wikipedia, the free encyclopedia

TACK
Sulfolobus
Scientific classificationEdit this classification
Domain: Archaea
Kingdom: Proteoarchaeota
Superphylum: TACK group
Guy & Ettema 2011
Phyla[1]
Synonyms
  • CrenarchaeotaGarrity & Holt 2002
  • "Eocyta"Lake et al. 1984[2][3]
  • "Filarchaeota"Cavalier-Smith 2014

TACKis a group ofarchaea,its name an acronym for Thaumarchaeota (nowNitrososphaerota),Aigarchaeota,Crenarchaeota (nowThermoproteota), andKorarchaeota,the first groups discovered. They are found in different environments ranging fromacidophilicthermophilestomesophilesandpsychrophilesand with different types ofmetabolism,predominantly anaerobic and chemosynthetic.[4]TACK is acladethat is sister to theAsgardbranch that gave rise to theeukaryotes.It has been proposed that the TACK clade be classified asCrenarchaeotaand that the traditional "Crenarchaeota" (Thermoproteota) be classified as a class called "Sulfolobia", along with the other phyla with class rank or order.[5]After including thekingdomcategory intoICNP,the proposed name of this group is kingdomThermoproteatiGuy and Ettema 2024.[6]

Classification

[edit]
  • Thermoproteota(formerly Crenarchaeota). It is the best known edge and the most abundantarchaeain the marine ecosystem. They were previously called sulfobacteria because of their dependence on sulfur and are important as carbon fixers. There arehyperthermophilesin hydrothermal vents and other groups are the most abundant at depths of less than 100 m.
  • "Aigarchaeota".It is a phylum proposed from the genome of the candidate speciesCaldiarchaeumsubterraneum found deep within a gold mine inJapan.Genomic sequences of this group have also been found in geothermal environments, both terrestrial and marine.
  • "Geoarchaeota".It includes thermophilic organisms that live in acidic environments reducing ferric iron. Alternatively it has been proposed that this and earlier group actually belong to the phylum Nitrososphaerota.
  • Nitrososphaerota(formerly Thaumarchaeota). It includes mesophilic or psychrophilic organisms (medium and low temperatures), of ammonia-oxidant chemolytoautotrophic metabolism (nitrifying) and that can play an important role in biochemical cycles, such as the nitrogen and carbon cycles.
  • "Bathyarchaeota".It is abundant in the sediments of the seabed with a shortage of nutrients. At least some lineages develop through homoacetogenesis, a type of metabolism hitherto thought unique to bacteria.
  • "Korarchaeota".They have only been found in hydrothermal environments and in low abundance. They seem diversified at different phylogenetic levels according to temperature, salinity (fresh or marine water) and geography.

Phylogeny

[edit]

The relationships are roughly as follows:

McKay et al. 2019[7] 16S rRNA basedLTP_06_2022[8][9][10] 53 marker proteins basedGTDB08-RS214[11][12][13]
"TACK"
Eocyte hypothesis[14]

Eocyte hypothesis

[edit]

Theeocyte hypothesisproposed in the 1980s byJames Lakesuggests thateukaryotesemerged within theprokaryoticeocytes.[15]

One piece of evidence supporting a close relationship between TACK and eukaryotes is the presence of a homolog of theRNA polymerase subunit Rbp-8in Thermoproteota but not in Euryarchaea.[16]

See also

[edit]

References

[edit]
  1. ^Castelle, C.J.; Banfield, J.F. (2018)."Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life".Cell.172(6): 1181–1197.doi:10.1016/j.cell.2018.02.016.PMID29522741.
  2. ^Lake, J.A.; Henderson, E.; Oakes, M. (Clark, M.W.) (1984)."Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes".PNAS.81(12): 3786–3790.Bibcode:1984PNAS...81.3786L.doi:10.1073/pnas.81.12.3786.PMC345305.PMID6587394.{{cite journal}}:CS1 maint: multiple names: authors list (link)
  3. ^Lake, J.A. (2015)."Eukaryotic origins".Philos Trans R Soc Lond B Biol Sci.370(1678): 20140321.doi:10.1098/rstb.2014.0321.PMC4571561.PMID26323753.
  4. ^Guy, Lionel; Ettema, Thijs J.G. (2011). "The archaeal 'TACK' superphylum and the origin of eukaryotes".Trends in Microbiology.19(12): 580–587.doi:10.1016/j.tim.2011.09.002.PMID22018741.
  5. ^Cavalier-Smith, Thomas;Chao, Ema E-Yung (2020)."Multidomain ribosomal protein trees and the planctobacterial origin of neomura (Eukaryotes, archaebacteria)".Protoplasma.257(3): 621–753.doi:10.1007/s00709-019-01442-7.PMC7203096.PMID31900730.
  6. ^Göker, Markus; Oren, Aharon (22 January 2024)."Valid publication of names of two domains and seven kingdoms of prokaryotes".International Journal of Systematic and Evolutionary Microbiology.74(1).doi:10.1099/ijsem.0.006242.ISSN1466-5026.PMID38252124.
  7. ^McKay, L.J., Dlakić, M., Fields, M.W. et al.Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota.Nat Microbiol 4, 614–622 (2019) doi:10.1038/s41564-019-0362-4
  8. ^"The LTP".The All-Species Living Tree Project.Retrieved10 May2023.
  9. ^"LTP_all tree in newick format".The All-Species Living Tree Project.Retrieved10 May2023.
  10. ^"LTP_06_2022 Release Notes"(PDF).The All-Species Living Tree Project.Retrieved10 May2023.
  11. ^"GTDB release 08-RS214".Genome Taxonomy Database.Retrieved10 May2023.
  12. ^"ar53_r214.sp_label".Genome Taxonomy Database.Retrieved10 May2023.
  13. ^"Taxon History".Genome Taxonomy Database.Retrieved10 May2023.
  14. ^Cox, C. J.; Foster, P. G.; Hirt, R. P.; Harris, S. R.; Embley, T. M. (2008)."The archaebacterial origin of eukaryotes".Proc Natl Acad Sci USA.105(51): 20356–61.Bibcode:2008PNAS..10520356C.doi:10.1073/pnas.0810647105.PMC2629343.PMID19073919.
  15. ^(UCLA) The origin of the nucleus and the tree of lifeArchived2003-02-07 atarchive.today
  16. ^Kwapisz, M.; Beckouët, F.; Thuriaux, P. (2008). "Early evolution of eukaryotic DNA-dependent RNA polymerases".Trends Genet.24(5): 211–5.doi:10.1016/j.tig.2008.02.002.PMID18384908.