Jump to content

Sodium thioantimoniate

From Wikipedia, the free encyclopedia
(Redirected fromThioantimonate)
Sodium thioantimoniate
Sodium thioantimoniate
Names
IUPAC name
Sodium tetrathioantimonate(V)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.208.207Edit this at Wikidata
EC Number
  • 682-752-5 (nonahydrate)
UNII
  • InChI=1S/3Na.9H2O.4S.Sb/h;;;9*1H2;;;;;/q3*+1;;;;;;;;;;;3*-1;
    Key: ZHSCVFVPXYYCAW-UHFFFAOYSA-N
  • (nonahydrate): O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[S-][Sb](=S)([S-])[S-]
Properties
Na3SbS4(anhydrous)
Na3SbS4·9H2O(nonahydrate)
Molar mass 272.13g·mol−1(anhydrous)
434.27 g·mol−1(nonahydrate)
Appearance Yellow crystals
Density 1.806 g/cm3,solid
Melting point 87 °C (189 °F; 360 K)
Hazards
GHSlabelling:
GHS07: Exclamation markGHS09: Environmental hazard
Warning
H302,H332,H411
P261,P264,P270,P271,P273,P301+P312,P304+P312,P304+P340,P312,P330,P391,P501
Related compounds
Othercations
Potassium thioantimoniate
Related compounds
Antimony(III) sulfide
Except where otherwise noted, data are given for materials in theirstandard state(at 25 °C [77 °F], 100 kPa).

Sodium thioantimoniateorsodium tetrathioantimonate(V)is aninorganic compoundwith theformulaNa3SbS4.The nonahydrate of this chemical,Na3SbS4·9H2O,is known asSchlippe's salt,named after Johann Karl Friedrich von Schlippe (1799–1867). These compounds are examples ofsulfosalts.They were once of interest as species generated inqualitative inorganic analysis.

Structure

[edit]
Anhydrous NaSbS3has a complicated structure featuring SbS4tetrahedra interconnected by Na-S bonds. Color scheme: red = Sb, yellow = S, violet = Na.

The nonahydrate consists of the tetrahedral tetrathioantimonate(V) anionsSbS3−4and sodium cationsNa+,which arehydrated.The Sb-S distance is 2.33Å.[1][2]Related salts are known for different cations includingammoniumandpotassium.

The anhydrous salt is a polymer with tetrahedral Na and Sb sites.[3]

Preparation

[edit]

Sodium tetrathioantimonate nonahydrate is prepared by the reaction of "antimony trisulfide",elementalsulfur,and aqueoussulfidesource.[4]

3 Na2S + 2 S + Sb2S3+ 18 H2O → 2 Na3SbS4·9H2O

The Na2S can be generated in situ by the reaction ofsodium hydroxideand S (co-generating sodium sulfate):

Sb2S3+ 8 NaOH + 6 S → 2 Na3SbS4+ Na2SO4+ 4 H2O

Charcoal can also be used to reduce the sulfur.

The required antimony trisulfide is prepared by treatment of Sb(III) compounds with sulfide sources:

2 SbCl3+ 3 H2S → Sb2S3+ 6 HCl

Reactions

[edit]

The hydrate dissolves in water to give the tetrahedralSbS3−4ion. The salt givesantimony pentasulfideupon acidification:

2 Na3SbS4+ 6 HCl → Sb2S5+ 6 NaCl + 3 H2S

Notes

[edit]
  1. ^Krebs, B., "Thio- and Seleno Compounds of Main Group Elements - New Inorganic Oligomers and Polymers", Angewandte Chemie, 1983, volume 95, pages 113-34.
  2. ^K. Mereiter, A. Preisinger and H. Guth "Hydrogen bonds in Schlippe's salt: refinement of the crystal structures of Na3SbS4.9H2O by X-ray diffraction and Na3SbS4.9D2O by neutron diffraction at room temperature "Acta Crystallographica 1979, vol. B35, 19-25.doi:10.1107/S0567740879002442.
  3. ^H. A. Graf, H. Schäfer "Zur Strukturchemie der Alkalisalze der Tetrathiosäuren der Elemente der 5. Hauptgruppe (pages 67–80) Zeitschrift für Anorganische und Allgemeine Chemie 1976, vol. 425, p67-p80.doi:10.1002/zaac.19764250109
  4. ^P. W. Schenk (1963). "Arsenic, Antimony, Bismuth". In G. Brauer (ed.).Handbook of Preparative Inorganic Chemistry, 2nd Ed.Vol. 1pages=618. NY, NY: Academic Press.

References

[edit]