Jump to content

UDP-glucose 4-epimerase

From Wikipedia, the free encyclopedia
UDP-glucose 4-epimerase
Identifiers
AliasesUDPgalactose 4-epimerase4-epimeraseuridine diphosphate glucose 4-epimeraseUDPG-4-epimeraseUDP-galactose 4-epimeraseuridine diphosphoglucose epimeraseuridine diphospho-galactose-4-epimeraseUDP-D-galactose 4-epimeraseUDP-glucose epimeraseuridine diphosphoglucose 4-epimeraseuridine diphosphate galactose 4-epimerase
External IDsGeneCards:[1];OMA:- orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMedsearchn/an/a
Wikidata
View/Edit Human
UDP-glucose 4-epimerase
H. sapiensUDP-glucose 4-epimerase homodimer bound toNADHandUDP-glucose.Domains:N-terminalandC-terminal.
Identifiers
EC no.5.1.3.2
CAS no.9032-89-7
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDBstructuresRCSB PDBPDBePDBsum
Gene OntologyAmiGO/QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
UDP-galactose-4-epimerase
Human GALE bound toNAD+andUDP-GlcNAc,withN-andC-terminaldomains highlighted.Asn 207contorts to accommodate UDP-GlcNAc within the active site.
Identifiers
SymbolGALE
NCBI gene2582
HGNC4116
OMIM606953
RefSeqNM_000403
UniProtQ14376
Other data
EC number5.1.3.2
LocusChr. 1p36-p35
Search for
StructuresSwiss-model
DomainsInterPro
NAD-dependent epimerase/dehydratase
Identifiers
Symbol?
PfamPF01370
InterProIPR001509
Membranome330
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary

TheenzymeUDP-glucose 4-epimerase(EC5.1.3.2), also known asUDP-galactose 4-epimeraseorGALE,is a homodimeric epimerase found in bacterial, fungal, plant, and mammalian cells. This enzyme performs the final step in theLeloir pathwayofgalactosemetabolism, catalyzing the reversible conversion ofUDP-galactosetoUDP-glucose.[1]GALE tightly bindsnicotinamide adenine dinucleotide(NAD+), a co-factor required for catalytic activity.[2]

Additionally, human and some bacterial GALE isoforms reversibly catalyze the formation of UDP-N-acetylgalactosamine (UDP-GalNAc) from UDP-N-acetylglucosamine (UDP-GlcNAc) in the presence of NAD+, an initial step inglycoproteinorglycolipidsynthesis.[3]

Historical significance

[edit]

Dr.Luis Leloirdeduced the role of GALE in galactose metabolism during his tenure at the Instituto de Investigaciones Bioquímicas del Fundación Campomar, initially terming the enzyme waldenase.[4]Dr. Leloir was awarded the 1970Nobel Prize in Chemistryfor his discovery of sugar nucleotides and their role in the biosynthesis of carbohydrates.[5]

Structure

[edit]

GALE belongs to the short-chain dehydrogenase/reductase (SDR) superfamily of proteins.[6]This family is characterized by a conserved Tyr-X-X-X-Lys motif necessary for enzymatic activity; one or moreRossmann foldscaffolds; and the ability to bind NAD+.[6]

Tertiary structure

[edit]

GALE structure has been resolved for a number of species, includingE. coli[7]and humans.[8]GALE exists as a homodimer in various species.[8]

While subunit size varies from 68 amino acids(Enterococcus faecalis)to 564 amino acids(Rhodococcus jostii),a majority of GALE subunits cluster near 330 amino acids in length.[6]Each subunit contains two distinct domains. An N-terminal domain contains a 7-stranded parallel β-pleated sheet flanked by α-helices.[1]PairedRossmann foldswithin this domain allow GALE to tightly bind one NAD+cofactor per subunit.[2]A 6-stranded β-sheet and 5 α-helices comprise GALE's C-terminal domain.[1]C-terminal residues bind UDP, such that the subunit is responsible for correctly positioning UDP-glucose or UDP-galactose for catalysis.[1]

Active site

[edit]

The cleft between GALE's N- and C-terminal domains constitutes the enzyme'sactive site.A conserved Tyr-X-X-X Lys motif is necessary for GALE catalytic activity; in humans, this motif is represented by Tyr 157-Gly-Lys-Ser-Lys 161,[6]whileE. coliGALE contains Tyr 149-Gly-Lys-Ser-Lys 153.[8]The size and shape of GALE's active site varies across species, allowing for variable GALE substrate specificity.[3]Additionally, the conformation of the active site within a species-specific GALE is malleable; for instance, a bulky UDP-GlcNAc 2' N-acetyl group is accommodated within the human GALE active site by the rotation of the Asn 207 carboxamide side chain.[3]

KnownE. coliGALE residue interactions with UDP-glucose and UDP-galactose.[9]
Residue Function
Ala 216, Phe 218 Anchor uracil ring to enzyme.
Asp 295 Interacts with ribose 2' hydroxyl group.
Asn 179, Arg 231, Arg 292 Interact with UDP phosphate groups.
Tyr 299, Asn 179 Interact with galactose 2' hydroxyl or glucose 6' hydroxyl group; properly position sugar within active site.
Tyr 177, Phe 178 Interact with galactose 3' hydroxyl or glucose 6' hydroxyl group; properly position sugar within active site.
Lys 153 Lowers pKa of Tyr 149, allows for abstraction or donation of a hydrogen atom to or from the sugar 4' hydroxyl group.
Tyr 149 Abstracts or donates a hydrogen atom to or from the sugar 4' hydroxyl group, catalyzing formation of 4-ketopyranose intermediate.

Mechanism

[edit]

Conversion of UDP-galactose to UDP-glucose

[edit]

GALE inverts the configuration of the 4' hydroxyl group of UDP-galactose through a series of 4 steps. Upon binding UDP-galactose, a conserved tyrosine residue in the active site abstracts a proton from the 4' hydroxyl group.[7][10]

Concomitantly, the 4' hydride is added to thesi-face of NAD+, generating NADH and a 4-ketopyranose intermediate.[1]The 4-ketopyranose intermediate rotates 180° about the pyrophosphoryl linkage between the glycosyl oxygen and β-phosphorus atom, presenting the opposite face of the ketopyranose intermediate to NADH.[10]Hydride transfer from NADH to this opposite face inverts the stereochemistry of the 4' center. The conserved tyrosine residue then donates its proton, regenerating the 4' hydroxyl group.[1]

Conversion of UDP-GlcNAc to UDP-GalNAc

[edit]

Human and some bacterial GALE isoforms reversibly catalyze the conversion of UDP-GlcNAc to UDP-GalNAc through an identical mechanism, inverting the stereochemical configuration at the sugar's 4' hydroxyl group.[3][11]

Biological function

[edit]
Steps in the Leloir pathway of galactose metabolism.
Intermediates and enzymes in the Leloir pathway of galactose metabolism.[1]

Galactose metabolism

[edit]

No direct catabolic pathways exist for galactose metabolism. Galactose is therefore preferentially converted intoglucose-1-phosphate,which may be shunted intoglycolysisor theinositolsynthesis pathway.[12]

GALE functions as one of four enzymes in theLeloir pathwayof galactose conversion of glucose-1-phosphate. First,galactose mutarotaseconverts β-D-galactose to α-D-galactose.[1]Galactokinase then phosphorylates α-D-galactose at the 1' hydroxyl group, yieldinggalactose-1-phosphate.[1]In the third step,galactose-1-phosphate uridyltransferasecatalyzes the reversible transfer of a UMP moiety from UDP-glucose to galactose-1-phosphate, generating UDP-galactose and glucose-1-phosphate.[1]In the final Leloir step, UDP-glucose is regenerated from UDP-galactose by GALE; UDP-glucose cycles back to the third step of the pathway.[1]As such, GALE regenerates a substrate necessary for continued Leloir pathway cycling.

The glucose-1-phosphate generated in step 3 of the Leloir pathway may be isomerized toglucose-6-phosphatebyphosphoglucomutase.Glucose-6-phosphate readily enters glycolysis, leading to the production of ATP and pyruvate.[13]Furthermore, glucose-6-phosphate may be converted toinositol-1-phosphatebyinositol-3-phosphate synthase,generating a precursor needed forinositolbiosynthesis.[14]

UDP-GalNAc synthesis

[edit]

Human and selected bacterial GALE isoforms bind UDP-GlcNAc, reversibly catalyzing its conversion to UDP-GalNAc. A family ofglycosyltransferasesknown as UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosamine transferases (ppGaNTases) transfers GalNAc from UDP-GalNAc to glycoprotein serine and threonine residues.[15]ppGaNTase-mediated glycosylation regulates protein sorting,[16][17][18][19][20]ligand signaling,[21][22][23]resistance to proteolytic attack,[24][25]and represents the first committed step in mucin biosynthesis.[15]

Role in disease

[edit]

Human GALE deficiency or dysfunction results in Type IIIgalactosemia,which may exist in a mild (peripheral) or more severe (generalized) form.[12]

References

[edit]
  1. ^abcdefghijkHolden HM, Rayment I, Thoden JB (November 2003)."Structure and function of enzymes of the Leloir pathway for galactose metabolism".J. Biol. Chem.278(45): 43885–8.doi:10.1074/jbc.R300025200.PMID12923184.
  2. ^abLiu Y, Vanhooke JL, Frey PA (June 1996). "UDP-galactose 4-epimerase: NAD+ content and a charge-transfer band associated with the substrate-induced conformational transition".Biochemistry.35(23): 7615–20.doi:10.1021/bi960102v.PMID8652544.
  3. ^abcdThoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM (May 2001)."Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site".J. Biol. Chem.276(18): 15131–6.doi:10.1074/jbc.M100220200.PMID11279032.
  4. ^LELOIR LF (September 1951). "The enzymatic transformation of uridine diphosphate glucose into a galactose derivative".Arch Biochem.33(2): 186–90.doi:10.1016/0003-9861(51)90096-3.hdl:11336/140700.PMID14885999.
  5. ^"The Nobel Prize in Chemistry 1970"(Press release). The Royal Swedish Academy of Science. 1970.Retrieved2010-05-17.
  6. ^abcdKavanagh KL, Jörnvall H, Persson B, Oppermann U (December 2008)."Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes".Cell. Mol. Life Sci.65(24): 3895–906.doi:10.1007/s00018-008-8588-y.PMC2792337.PMID19011750.
  7. ^abPDB:1EK5​;Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM (May 2000). "Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase".Biochemistry.39(19): 5691–701.doi:10.1021/bi000215l.PMID10801319.
  8. ^abcPDB:1XEL​;Thoden JB, Frey PA, Holden HM (April 1996). "Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli: implications for the catalytic mechanism".Biochemistry.35(16): 5137–44.doi:10.1021/bi9601114.PMID8611497.
  9. ^PDB:1A9Z​;Thoden JB, Holden HM (August 1998). "Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli".Biochemistry.37(33): 11469–77.doi:10.1021/bi9808969.PMID9708982.
  10. ^abLiu Y, Thoden JB, Kim J, Berger E, Gulick AM, Ruzicka FJ, Holden HM, Frey PA (September 1997). "Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli".Biochemistry.36(35): 10675–84.doi:10.1021/bi970430a.PMID9271498.
  11. ^Kingsley DM, Kozarsky KF, Hobbie L, Krieger M (March 1986). "Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant".Cell.44(5): 749–59.doi:10.1016/0092-8674(86)90841-X.PMID3948246.S2CID28293937.
  12. ^abLai K, Elsas LJ, Wierenga KJ (November 2009)."Galactose toxicity in animals".IUBMB Life.61(11): 1063–74.doi:10.1002/iub.262.PMC2788023.PMID19859980.
  13. ^Stryer, Lubert; Berg, Jeremy Mark; Tymoczko, John L. (2008).Biochemistry (Looseleaf).San Francisco: W. H. Freeman. pp.443–58.ISBN9780716718437.
  14. ^Michell RH (February 2008). "Inositol derivatives: evolution and functions".Nat. Rev. Mol. Cell Biol.9(2): 151–61.doi:10.1038/nrm2334.PMID18216771.S2CID3245927.
  15. ^abTen Hagen KG, Fritz TA, Tabak LA (January 2003)."All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases".Glycobiology.13(1): 1R–16R.doi:10.1093/glycob/cwg007.PMID12634319.
  16. ^Alfalah M, Jacob R, Preuss U, Zimmer KP, Naim H, Naim HY (June 1999)."O-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts".Curr. Biol.9(11): 593–6.doi:10.1016/S0960-9822(99)80263-2.PMID10359703.S2CID16866875.
  17. ^Altschuler Y, Kinlough CL, Poland PA, Bruns JB, Apodaca G, Weisz OA, Hughey RP (March 2000)."Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state".Mol. Biol. Cell.11(3): 819–31.doi:10.1091/mbc.11.3.819.PMC14813.PMID10712502.
  18. ^Breuza L, Garcia M, Delgrossi MH, Le Bivic A (February 2002). "Role of the membrane-proximal O-glycosylation site in sorting of the human receptor for neurotrophins to the apical membrane of MDCK cells".Exp. Cell Res.273(2): 178–86.doi:10.1006/excr.2001.5442.PMID11822873.
  19. ^Naim HY, Joberty G, Alfalah M, Jacob R (June 1999)."Temporal association of the N- and O-linked glycosylation events and their implication in the polarized sorting of intestinal brush border sucrase-isomaltase, aminopeptidase N, and dipeptidyl peptidase IV".J. Biol. Chem.274(25): 17961–7.doi:10.1074/jbc.274.25.17961.PMID10364244.
  20. ^Zheng X,Sadler JE(March 2002)."Mucin-like domain of enteropeptidase directs apical targeting in Madin-Darby canine kidney cells".J. Biol. Chem.277(9): 6858–63.doi:10.1074/jbc.M109857200.PMID11878264.
  21. ^Hooper LV, Gordon JI (February 2001)."Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity".Glycobiology.11(2): 1R–10R.doi:10.1093/glycob/11.2.1R.PMID11287395.
  22. ^Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB, Fukuda M (June 2001)."Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase".Cell.105(7): 957–69.doi:10.1016/S0092-8674(01)00394-4.PMID11439191.S2CID18674112.
  23. ^Somers WS, Tang J, Shaw GD, Camphausen RT (October 2000)."Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1".Cell.103(3): 467–79.doi:10.1016/S0092-8674(00)00138-0.PMID11081633.S2CID12719907.
  24. ^Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B (December 2000). "Glucoamylase: structure/function relationships, and protein engineering".Biochim. Biophys. Acta.1543(2): 275–293.doi:10.1016/s0167-4838(00)00232-6.PMID11150611.
  25. ^Garner B, Merry AH, Royle L, Harvey DJ, Rudd PM, Thillet J (June 2001)."Structural elucidation of the N- and O-glycans of human apolipoprotein(a): role of o-glycans in conferring protease resistance".J. Biol. Chem.276(25): 22200–8.doi:10.1074/jbc.M102150200.PMID11294842.

Further reading

[edit]
[edit]