Jump to content

UGC 9684

From Wikipedia, the free encyclopedia
UGC 9684
Hubble Space Telescopeimage of UGC 9684
Observation data
ConstellationBoötes
Right ascension15h 03m 50.477s
Declination+42d 06m 55.55s
Redshift0.016866
Heliocentric radial velocity5,056
Distance247Mly(75.7Mpc)
Apparent magnitude(V)14.4
Characteristics
TypeSBab, Sab
Size90,000 ly
Apparent size(V)1.35 x 0.56 arcmin
Other designations
PGC53758, ECO 04872,CGCG221-023,MCG+07-31-024,2MASXJ15035050+4206556,2MASSJ15035049+4206554,SDSSJ150350.47+420655.5,IRASF15020+4218, UZC J150350.5+420655,LEDA53758

UGC 9684is abarred spiral galaxywith a ring structure[1]in theBoötesconstellation.[2]It is located 250 millionlight-yearsfrom theSolar Systemand has an approximatediameterof 90,000 light-years.[3]

Theluminosity classof UGC 9684 is I-II[4][3]and it is classified as an activestar-forming galaxyaccording to a study published in 2022,[5]in which produces onesolar massofstarsevery few years, with levels ofstellar formation.[6]

Studying of star formation rate for UGC 9684

[edit]

Scientistswho studied UGC 9684, have longed to find out the star-formation rate for UGC 9684.[5]To do this, they used a Fitting and Assessment of Synthetic Templates code.[7]The scientists used furtherobservationsviaultraviolet,bothopticalandnear-infraredand from the luminosity measurements from differentdatabasesfromGALEX,[8]SDSSand from the final release of theMASSextended source catalog by Jarrett et al. 2000,[9]with all the data retrieved fromNASA/IPAC Extragalactic Database.[5]

As for the star formation, they employed adecreasing functionof (SFR ∝et) and also a delayed function (SFR ∝t×et) as well as the stellar population libraries written from Bruzual & Charlot[10]and Convoy et al.[11]Severalmetallicityestimates, published by Prieto et al. 2008,[12]Kelly & Kirshner from 2012,[13]whom the majority agreed, it is slightly above solar oxygen abundance 12+ log(O/H) ≈ 9.0 which corresponds to ~2Z⊙.[5]

Scientists therefore found that thestar-formationrate of UGC 9684 is 0.25–0.39M⊙ yr−1.[5]Apart from that, they found the totalstellar massfor the galaxy isM⋆ = (2.0–3.5) × 1010M⊙ which is a current specific of SFR sSFR ≈ 0.01 Gyr−1. This is higher compared to literature but compatible to large number of recent events in UGC 9684.[5]

Supernovae

[edit]

Foursupernovae;SN 2006ed, SN 2012ib, AT 2017cgh and SN 2020pni, have been discovered in UGC 9684. This makes it as one of the most active supernova-producinggalaxies.[6]

SN 2006ed

SN 2006ed was discovered on September 18, 2006, via unfiltered CCD images, by N. Joubert, D. R. Madison, R. Mostardi, H. Khandrika and W. Li fromUniversity of California, Berkeleyon behalf ofLick Observatory Supernova Searchprogram (LOSS). SN 2006ed had amagnitudeon 19.0.[14]It was located 1 ".8 east and 7".2 south of the nucleus.[15]This supernova wasType II.[16][14]

SN 2012ib

SN 2012ib was discovered on December 20, 2012, by amateurastronomer,V. Shumkov fromSternberg Astronomical Institute(SAI), on four 60-sec unfiltered images from the MASTER-Amurrobotic telescopevia a 0.40-m f/2.5reflector.[17]The supernova was located at 48 ".7eastand 0 ".4southof the nucleus, which it had a magnitude of 18.9.[18]The supernova wasType Ib/c.[19]

AT 2017cgh

AT 2017cgh was discovered on March 15, 2017, byPan-STARRS1[20]Science consortium.[21]It was located 0 ".0 east and 0".0northof the nucleus with a magnitude of 17.7.[21]This supernova had an unknown type.[22]

SN 2020pni

SN 2020pni was discovered on July 16, 2020, by a team of astronomers on behalf of the ALeRCE broker[23]via r-ZTF filters which was taken by a Palomar 1.2m Oachintelescope.[24]It was located 5 ".7westand 5 ".0southof the nucleus with a magnitude of 17.0.[25]The supernova wasType II[26]in which its progenitor, amassive star,[27]was enriched inheliumandnitrogenin relative abundances in mass fractions of 0.30–0.40 and 8.2 × 10−3, respectively.[5]

A first study shows 1 day after the discovery, there is a significant He II emission which hasstrong flash features.[28]Another study shows during the 4 days after, there was an increase invelocityofhydrogen lines(from ~250 to ~1000 km/s) suggesting complexcircumstellar medium(CSM).[5]A presence of dense and confined CSM as well as itsinhomogeneous structure,indicates a phrase of enhancedmass lossof the SN 2020pni progenitor a year before the explosion.[5]As of 2023, the supernova has since faded from view.[6]

References

[edit]
  1. ^"HyperLeda -object description".atlas.obs-hp.fr.Retrieved2024-05-07.
  2. ^Ford, Dominic."UGC 9684 (Galaxy)".In-The-Sky.org.Retrieved2024-05-07.
  3. ^ab"Your NED Search Results".ned.ipac.caltech.edu.Retrieved2024-05-07.
  4. ^"Reference Lookup | NASA/IPAC Extragalactic Database".ned.ipac.caltech.edu.Retrieved2024-05-07.
  5. ^abcdefghiTerreran, G.; Jacobson-Galán, W. V.; Groh, J. H.; Margutti, R.; Coppejans, D. L.; Dimitriadis, G.; Kilpatrick, C. D.; Matthews, D. J.; Siebert, M. R.; Angus, C. R.; Brink, T. G.; Filippenko, A. V.; Foley, R. J.; Jones, D. O.; Tinyanont, S. (February 2022)."The Early Phases of Supernova 2020pni: Shock Ionization of the Nitrogen-enriched Circumstellar Material".The Astrophysical Journal.926(1): 20.arXiv:2105.12296.Bibcode:2022ApJ...926...20T.doi:10.3847/1538-4357/ac3820.ISSN0004-637X.
  6. ^abc[email protected]."A star forming factory".www.spacetelescope.org.Retrieved2024-05-07.
  7. ^Kriek, Mariska; Dokkum, Pieter G. van; Labbé, Ivo; Franx, Marijn; Illingworth, Garth D.; Marchesini, Danilo; Quadri, Ryan F. (July 2009)."An Ultra-Deep Near-Infrared Spectrum of a Compact Quiescent Galaxy at z = 2.2".The Astrophysical Journal.700(1): 221.arXiv:0905.1692.Bibcode:2009ApJ...700..221K.doi:10.1088/0004-637X/700/1/221.ISSN0004-637X.
  8. ^Seibert, Mark; Wyder, T.; Neill, J.; Madore, B.; Bianchi, L.; Smith, M.; Shiao, B.; Schiminovich, D.; Rich, R. M.; Conrow, T.; Martin, D. C.; GALEX Catalog Team (2012-01-01)."The Galaxy Evolution Explorer (GALEX) Source Catalogs".American Astronomical Society Meeting Abstracts #219.219:340.01.Bibcode:2012AAS...21934001S.
  9. ^Jarrett, T. H.; Chester, T.; Cutri, R.; Schneider, S.; Skrutskie, M.; Huchra, J. P. (2000-05-01)."2MASS Extended Source Catalog: Overview and Algorithms".The Astronomical Journal.119(5): 2498–2531.arXiv:astro-ph/0004318.Bibcode:2000AJ....119.2498J.doi:10.1086/301330.ISSN0004-6256.
  10. ^Bruzual, G.; Charlot, S. (October 1, 2003)."Stellar population synthesis at the resolution of 2003".academic.oup.com.Retrieved2024-05-12.
  11. ^Conroy, Charlie; Gunn, James E.; White, Martin (2009-06-12)."The Propagation of Uncertainties in Stellar Population Synthesis Modeling. I. The Relevance of Uncertain Aspects of Stellar Evolution and the Initial Mass Function to the Derived Physical Properties of Galaxies".The Astrophysical Journal.699(1): 486–506.arXiv:0809.4261.Bibcode:2009ApJ...699..486C.doi:10.1088/0004-637x/699/1/486.ISSN0004-637X.
  12. ^Prieto, Jose L.; Stanek, Krzysztof Z.; Beacom, John F. (February 2008)."Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals".The Astrophysical Journal.673(2): 999–1008.arXiv:0707.0690.Bibcode:2008ApJ...673..999P.doi:10.1086/524654.ISSN0004-637X.
  13. ^Kelly, Patrick L.; Kirshner, Robert P. (2012-10-26)."Core-Collapse Supernovae and Host Galaxy Stellar Populations".The Astrophysical Journal.759(2): 107.arXiv:1110.1377.Bibcode:2012ApJ...759..107K.doi:10.1088/0004-637x/759/2/107.ISSN0004-637X.
  14. ^abJoubert, N.; Li, W. (2006-08-01)."Supernovae 2006ed, 2006ee, 2006ef".Central Bureau Electronic Telegrams.597:1.Bibcode:2006CBET..597....1J.
  15. ^"Bright Supernovae - 2006".www.rochesterastronomy.org.Retrieved2024-05-07.
  16. ^"SN 2006ed | Transient Name Server".www.wis-tns.org.Retrieved2024-05-07.
  17. ^Lipunov, V.; Shumkov, V.; Denisenko, D.; Gorbovskoy, E.; Brimacombe, J.; Tomasella, L.; Benetti, S.; Cappellaro, E.; Ochner, P.; Pastorello, A.; Turatto, M. (2012-12-01)."Supernova 2012ib in UGC 9684 = Psn J15035487+4206553".Central Bureau Electronic Telegrams.3359:1.Bibcode:2012CBET.3359....1L.
  18. ^[email protected]."Bright Supernovae - 2012".www.rochesterastronomy.org.Retrieved2024-05-07.
  19. ^"SN 2012ib | Transient Name Server".www.wis-tns.org.Retrieved2024-05-07.
  20. ^Chambers, K. C.; Huber, M. E.; Flewelling, H.; Magnier, E. A.; Primak, N.; Schultz, A.; Smartt, S. J.; Smith, K. W.; Tonry, J.; Waters, C.; Wright, D. E.; Young, D. R. (2017-01-01)."Pan-STARRS1 Transient Discovery Report for 2017-01-03".Transient Name Server Discovery Report.2017–14: 1.Bibcode:2017TNSTR..14....1C.
  21. ^ab"Bright Supernovae - 2017".www.rochesterastronomy.org.Retrieved2024-05-07.
  22. ^"AT 2017cgh | Transient Name Server".www.wis-tns.org.Retrieved2024-05-07.
  23. ^"Home | ALeRCE".alerce.science.Retrieved2024-05-07.
  24. ^"Discovery certificate for object 2020pni | Transient Name Server".www.wis-tns.org.Retrieved2024-05-07.
  25. ^"Bright Supernovae - 2020".www.rochesterastronomy.org.Retrieved2024-05-07.
  26. ^"SN 2020pni | Transient Name Server".www.wis-tns.org.Retrieved2024-05-07.
  27. ^Martinez, L.; Bersten, M. C.; Anderson, J. P.; González-Gaitán, S.; Förster, F.; Folatelli, G. (2020-10-01)."Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods".Astronomy & Astrophysics.642:A143.arXiv:2008.05572.Bibcode:2020A&A...642A.143M.doi:10.1051/0004-6361/202038393.ISSN0004-6361.
  28. ^Bruch, R.; Nordin, J.; Schulze, S.; Yang, Y.; Irani, I.; Gal-Yam, A.; Yaron, O.; Perley, D.; Sollerman, J. (2020-07-01)."ZTF early discovery and rapid follow-up of the infant SN ZTF20ablygyy/2020pni".Transient Name Server AstroNote.136:1.Bibcode:2020TNSAN.136....1B.