Jump to content

Viridiplantae

From Wikipedia, the free encyclopedia

Viridiplantae
An assortment ofthallophyteViridiplantae in arock pool,Taiwan
Scientific classificationEdit this classification
Domain: Eukaryota
Clade: Diaphoretickes
(unranked): Archaeplastida
(unranked): Viridiplantae
Cavalier-Smith,1981
Subgroups
Synonyms
  • Plantae,Copeland,1938, 1956[2][3]
  • EuchlorophytaWhittaker, 1969[4]
  • Chlorophytasensuvan den Hoek & Jahns, 1978[5]
  • ChlorobiontaJeffrey 1982, emend. Bremer 1985, emend. Lewis and McCourt 2004
  • ChlorobiotaKendrick and Crane 1997
  • ChloroplastidaAdl et al., 2005
  • ViridiplantaeCavalier-Smith 1981[6]
  • Phyta Barkley 1939 emed. Holt & Uidica 2007
  • Cormophyta Endlicher, 1836
  • Cormobionta Rothmaler, 1948
  • Euplanta Barkley, 1949
  • Telomobionta Takhtajan, 1964
  • Embryobionta Cronquist et al., 1966
  • Metaphyta Whittaker, 1969

Viridiplantae(literally "green plants" )[6]constitute acladeofeukaryoticorganisms that comprises approximately 450,000–500,000 species that play important roles in both terrestrial and aquatic ecosystems.[7]They include thegreen algae,which are primarily aquatic, and the land plants (embryophytes), which emerged from within them.[8][9][10]Green algae traditionally excludes the land plants, rendering them aparaphyleticgroup. However it is accurate to think of land plants as a kind of alga.[11]Since the realization that the embryophytes emerged from within the green algae, some authors are starting to include them.[11][12][13][14][15]They have cells withcellulosein their cell walls, and primary chloroplasts derived fromendosymbiosiswithcyanobacteriathat containchlorophylls aandband lackphycobilins.Corroborating this, a basalphagotropharchaeplastida group has been found in theRhodelphydia.[16]

In some classification systems, the group has been treated as akingdom,[17]under various names, e.g. Viridiplantae,Chlorobionta,or simplyPlantae,the latter expanding the traditionalplant kingdomto include thegreen algae.Adlet al.,who produced a classification for alleukaryotesin 2005, introduced the nameChloroplastidafor this group, reflecting the group having primarychloroplastswith greenchlorophyll.They rejected the name Viridiplantae on the grounds that some of the species are not plants, as understood traditionally.[18]The Viridiplantae are made up of two clades:ChlorophytaandStreptophytaas well as the basalMesostigmatophyceaeandChlorokybophyceae.[19][20]Together withRhodophytaandglaucophytes,Viridiplantae are thought to belong to a larger clade calledArchaeplastidaor Primoplantae.

Phylogeny and classification[edit]

Simplified phylogeny of the Viridiplantae, according to Leliaertet al.2012.[21]

Cladogram[edit]

In 2019, a phylogeny based on genomes and transcriptomes from 1,153 plant species was proposed.[23]The placing of algal groups is supported by phylogenies based on genomes from the Mesostigmatophyceae and Chlorokybophyceae that have since been sequenced. Both the "chlorophyte algae" and the "streptophyte algae" are treated as paraphyletic (vertical bars beside phylogenetic tree diagram) in this analysis.[24][25]The classification ofBryophytais supported both by Putticket al.2018,[26]and by phylogenies involving the hornwort genomes that have also since been sequenced.[27][28]

Archaeplastida
"chlorophyte algae"
"streptophyte algae"

Ancestrally, the green algae were flagellates.[21]


References[edit]

  1. ^Tang, Qing (24 February 2020)."A one-billion-year-old multicellular chlorophyte".Nature Ecology and Evolution.4(5): 543–549.doi:10.1038/s41559-020-1122-9.PMC8668152.
  2. ^Copeland HF (1938). "The kingdoms of organisms".The Quarterly Review of Biology.13(4): 383–420.doi:10.1086/394568.S2CID84634277.
  3. ^Copeland HF (1956).The Classification of Lower Organisms.Palo Alto: Pacific Books. p. 6.
  4. ^Whittaker RH (January 1969)."New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms"(PDF).Science.163(3863): 150–60.CiteSeerX10.1.1.403.5430.doi:10.1126/science.163.3863.150.PMID5762760.Archived fromthe original(PDF)on 2017-11-17.Retrieved2015-01-31.
  5. ^van den Hoek C, Jahns HM (1978).Einführung in die Phykologie(in German). Stuttgart: Georg Thieme Verlag.ISBN9783135511016.
  6. ^abCavalier-Smith T (1981). "Eukaryote kingdoms: seven or nine?".Bio Systems.14(3–4): 461–81.doi:10.1016/0303-2647(81)90050-2.PMID7337818.
  7. ^Leebens-Mack JH, Barker MS, Carpenter EJ,Deyholos MK,Gitzendanner MA, Graham SW, et al. (One Thousand Plant Transcriptomes Initiative) (October 2019)."One thousand plant transcriptomes and the phylogenomics of green plants".Nature.574(7780): 679–685.doi:10.1038/s41586-019-1693-2.PMC6872490.PMID31645766.
  8. ^Cocquyt E, Verbruggen H, Leliaert F, Zechman FW, Sabbe K, De Clerck O (February 2009)."Gain and loss of elongation factor genes in green algae".BMC Evolutionary Biology.9:39.doi:10.1186/1471-2148-9-39.PMC2652445.PMID19216746.
  9. ^Becker B (2007).Function and evolution of the vacuolar compartment in green algae and land plants (Viridiplantae).International Review of Cytology. Vol. 264. pp.1–24.doi:10.1016/S0074-7696(07)64001-7.ISBN9780123742636.PMID17964920.
  10. ^Kim E, Graham LE (July 2008). Redfield RJ (ed.)."EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata".PLOS ONE.3(7): e2621.Bibcode:2008PLoSO...3.2621K.doi:10.1371/journal.pone.0002621.PMC2440802.PMID18612431.
  11. ^abDelwiche CF, Timme RE (June 2011)."Plants".Current Biology.21(11): R417–22.doi:10.1016/j.cub.2011.04.021.PMID21640897.
  12. ^"Charophycean Green Algae Home Page".www.life.umd.edu.Retrieved2018-02-24.
  13. ^Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (February 2014)."From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes".BMC Evolutionary Biology.14:23.doi:10.1186/1471-2148-14-23.PMC3933183.PMID24533922.
  14. ^Delwiche CF, Cooper ED (October 2015)."The Evolutionary Origin of a Terrestrial Flora".Current Biology.25(19): R899–910.doi:10.1016/j.cub.2015.08.029.PMID26439353.
  15. ^Parfrey LW, Lahr DJ, Knoll AH, Katz LA (August 2011)."Estimating the timing of early eukaryotic diversification with multigene molecular clocks".Proceedings of the National Academy of Sciences of the United States of America.108(33): 13624–9.Bibcode:2011PNAS..10813624P.doi:10.1073/pnas.1110633108.PMC3158185.PMID21810989.
  16. ^Bowles, Alexander M. C.; Williamson, Christopher J.; Williams, Tom A.; Lenton, Timothy M.; Donoghue, Philip C. J. (2022-10-31)."The origin and early evolution of plants".Trends in Plant Science.28(3): 312–329.doi:10.1016/j.tplants.2022.09.009.hdl:10871/131900.ISSN1360-1385.PMID36328872.S2CID253303816.
  17. ^"Viridiplantae".Retrieved2009-03-08.
  18. ^Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. (2005)."The new higher level classification of eukaryotes with emphasis on the taxonomy of protists".The Journal of Eukaryotic Microbiology.52(5): 399–451.doi:10.1111/j.1550-7408.2005.00053.x.PMID16248873.S2CID8060916.
  19. ^Simon A, Glöckner G, Felder M, Melkonian M, Becker B (February 2006)."EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta): implications for the evolution of green plants (Viridiplantae)".BMC Plant Biology.6:2.doi:10.1186/1471-2229-6-2.PMC1413533.PMID16476162.
  20. ^Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (September 2017)."Early photosynthetic eukaryotes inhabited low-salinity habitats".Proceedings of the National Academy of Sciences of the United States of America.114(37): E7737–E7745.Bibcode:2017PNAS..114E7737S.doi:10.1073/pnas.1620089114.PMC5603991.PMID28808007.
  21. ^abLeliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012)."Phylogeny and molecular evolution of the green algae"(PDF).Critical Reviews in Plant Sciences.31(1): 1–46.Bibcode:2012CRvPS..31....1L.doi:10.1080/07352689.2011.615705.S2CID17603352.
  22. ^Marin B (September 2012). "Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons".Protist.163(5): 778–805.doi:10.1016/j.protis.2011.11.004.PMID22192529.
  23. ^Leebens-Mack, M.; Barker, M.; Carpenter, E.; et al. (2019)."One thousand plant transcriptomes and the phylogenomics of green plants".Nature.574(7780): 679–685.doi:10.1038/s41586-019-1693-2.PMC6872490.PMID31645766.
  24. ^Liang, Zhe; et al. (2019)."Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta".Advanced Science.7(1): 1901850.doi:10.1002/advs.201901850.PMC6947507.PMID31921561.
  25. ^Wang, Sibo; et al. (2020)."Genomes of early-diverging streptophyte algae shed light on plant terrestrialization".Nature Plants.6(2): 95–106.doi:10.1038/s41477-019-0560-3.PMC7027972.PMID31844283.
  26. ^Puttick, Mark; et al. (2018)."The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte".Current Biology.28(5): 733–745.doi:10.1016/j.cub.2018.01.063.hdl:10400.1/11601.PMID29456145.
  27. ^Zhang, Jian; et al. (2020)."The hornwort genome and early land plant evolution".Nature Plants.6(2): 107–118.doi:10.1038/s41477-019-0588-4.PMC7027989.PMID32042158.
  28. ^Li, Fay Wei; et al. (2020)."Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts".Nature Plants.6(3): 259–272.doi:10.1038/s41477-020-0618-2.PMC8075897.PMID32170292.