Jump to content

Waldspurger formula

From Wikipedia, the free encyclopedia

Inrepresentation theoryof mathematics, theWaldspurger formularelates thespecial valuesof twoL-functionsof two relatedadmissibleirreducible representations.Letkbe the base field,fbe anautomorphic formoverk,πbe the representation associated via theJacquet–Langlands correspondencewithf.Goro Shimura(1976) proved this formula, whenandfis acusp form;Günter Hardermade the same discovery at the same time in an unpublished paper.Marie-France Vignéras(1980) proved this formula, whenandfis anewform.Jean-Loup Waldspurger,for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

Statement

[edit]

Letbe anumber field,be itsadele ring,be thesubgroupof invertible elements of,be the subgroup of the invertible elements of,be three quadratic characters over,,be the space of allcusp formsover,be theHecke algebraof.Assume that,is an admissible irreducible representation fromto,thecentral characterof π is trivial,whenis an archimedean place,is a subspace ofsuch that.We suppose further that,is the Langlands-constant [ (Langlands 1970); (Deligne 1972) ] associated toandat.There is asuch that.

Definition 1. TheLegendre symbol

  • Comment. Because all the terms in the right either have value +1, or have value −1, the term in the left can only take value in the set {+1, −1}.

Definition 2. Letbe thediscriminantof.

Definition 3. Let.

Definition 4. Letbe amaximal torusof,be the center of,.

  • Comment. It is not obvious though, that the functionis a generalization of theGauss sum.

Letbe a field such that.One can choose a K-subspaceofsuch that (i);(ii).De facto, there is only one suchmodulo homothety. Letbe two maximal tori ofsuch thatand.We can choose two elementsofsuch thatand.

Definition 5. Letbe the discriminants of.

  • Comment. When the,the right hand side of Definition 5 becomes trivial.

We taketo be the set {all the finite-placesdoesn't map non-zero vectors invariant under the action ofto zero},to be the set of (all-placesis real, or finite and special).

Theorem[1]Let.We assume that, (i);(ii) for,.Then, there is a constantsuch that

Comments:

  1. The formula in the theorem is the well-known Waldspurger formula. It is of global-local nature, in the left with a global part, in the right with a local part. By 2017, mathematicians often call it the classic Waldspurger's formula.
  2. It is worthwhile to notice that, when the two characters are equal, the formula can be greatly simplified.
  3. [ (Waldspurger 1985), Thm 6, p. 241 ] When one of the two characters is,Waldspurger's formula becomes much more simple. Without loss of generality, we can assume that,and.Then, there is an elementsuch that

The case whenFp(T)andφis a metaplectic cusp form

[edit]

Let p be prime number,be the field withpelements,be theinteger ringof.Assume that,,D issquarefreeof even degree and coprime toN,theprime factorizationofis.We taketo the setto be the set of all cusp forms of levelNand depth 0. Suppose that,.

Definition 1. Letbe theLegendre symbolofcmodulod,.Metaplectic morphism

Definition 2. Let.Petersson inner product

Definition 3. Let.Gauss sum

Letbe the Laplace eigenvalue of.There is a constantsuch that

Definition 4. Assume that.Whittaker function

Definition 5. Fourier–Whittaker expansionOne callsthe Fourier–Whittaker coefficients of.

Definition 6.Atkin–Lehner operatorwith

Definition 7. Assume that,is aHecke eigenform.Atkin–Lehner eigenvaluewith

Definition 8.

Letbe the metaplectic version of,be a nice Hecke eigenbasis forwith respect to thePetersson inner product.We note theShimura correspondenceby

Theorem [ (Altug & Tsimerman 2010), Thm 5.1, p. 60 ]. Suppose that,is a quadratic character with.Then

References

[edit]
  1. ^(Waldspurger 1985), Thm 4, p. 235
  • Waldspurger, Jean-Loup (1985), "Sur les valeurs de certaines L-fonctions automorphes en leur centre de symétrie",Compositio Mathematica,54(2): 173–242
  • Vignéras, Marie-France (1981), "Valeur au centre de symétrie des fonctions L associées aux formes modulaire",Séminarie de Théorie des Nombres, Paris 1979–1980,Progress in Math., Birkhäuser, pp. 331–356
  • Shimura, Gorô (1976), "On special values of zeta functions associated with cusp forms",Communications on Pure and Applied Mathematics,29:783–804,doi:10.1002/cpa.3160290618
  • Altug, Salim Ali; Tsimerman, Jacob (2010). "Metaplectic Ramanujan conjecture over function fields with applications to quadratic forms".International Mathematics Research Notices.arXiv:1008.0430.doi:10.1093/imrn/rnt047.S2CID119121964.
  • Langlands, Robert (1970).On the Functional Equation of the Artin L-Functions(PDF).pp. 1–287.
  • Deligne, Pierre (1972). "Les constantes des équations fonctionelle des fonctions L".Modular Functions of One Variable II.International Summer School on Modular functions. Antwerp. pp. 501–597.