Jump to content

Silicide hydride

From Wikipedia, the free encyclopedia

A silicide hydride is a mixed anion compound that contains silicide (Si4− or clusters) and hydride (H) anions. The hydrogen is not bound to silicon in these compounds. These can be classed as interstitial hydrides, Hydrogenated zintl phases, or Zintl phase hydrides.[1] In the related silanides, SiH3 anions or groups occur. Where hydrogen is bonded to the silicon, this is a case of anionic hydride, and where it is bonded to a more complex anion, it would be termed polyanionic hydride.[1]

Silicide hydrides may be prepared by heating a Zintl phase or metal silicide under hydrogen pressure, of perhaps 20 atmospheres.[2]

Properties

[edit]

In CaSiD1+x the deuterium atom (D) fits in a tetrahedral hole between three calcium and one silicon atoms. The Si-D distance is 1.82 Å, quite a bit further than then a Si-H covalent bond.[3]

List

[edit]
formula system space group unit cell Å volume density comment reference
Li4Si2H orthorhombic Cmmm zigzag Si chains Si-Si 2.39 [4]
CaSiH [3]
CaSiH1+x x<1.2 orthorhombic Pnma a = 14.4884, b = 3.8247, c = 11.2509, Z = 3 zigzag Si chains Si-Si 2.47 [4]
CaAlSiH trigonal Z=1 Al-H bond semimetal [4]
Ca2SiH2.41 amorphous a=5.969 b=3.6146 c=6.815 reversible hydrogen storage [4]
Ca5Si3H0.53 tetrahedral I4/mcm a=7.6394 c=14.7935 Z=4 863.33 [1][5]
SrSiH1.6 orthorhombic Pnma [6]
SrAlSiH P3m1 Al-H bond semimetal [4]
SrGaSiH trigonal P3m1 Z=1 grey; Ga-H 1.71 semimetal [4][7]
Sr21Si2O5H21+x cubic Fd3m a = 19.1190 [8]
BaSiH3.4 orthorhombic Pnma [6]
Ba3Si4Hx (x = 1–2) tetrahedral I4/mcm a ≈ 8.44, c ≈ 11.95, Z = 8 Si46– in a butterfly-shape [2]
Ba21Si2O5H21+x cubic Fd3m a = 20.336 [8]
BaAlSiH Al-H bond semimetal [4]
BaGaSiH trigonal P3m1 a=4.2934 c=5.186 Z=1 82.79 grey; air stable; Ga-H 1.71 semimetal [4][7]
BaGaSiD trigonal P3m1 a=4.2776 c=5.1948 Z=1 82.32 grey [7]
LaFeSiH tetragonal P4/nmm a=4.0270 c=8.0374 [9]
LaFeSiH orthorhombic Cmme a=5.6831 b=5.7037 c=7.9728 at 15K; superconductor Tc=9.7K [10]
La3Pd5SiD~1.6 orthorhombic Imma a=13.193 b=7.638 c=7.916 801.8 <9.5 bar [11]
La3Pd5SiD~2.71 orthorhombic Imma a=13.102 b=7.673 c=8.168 821.3 [11]
La3Pd5SiD~5 orthorhombic Pmnb a=13.16 b=7.91 c=8.20 854 >75 bar [11]
BaLaSi2D0.80 orthorhombic Cmcm a = 4.6443, b = 15.267, c = 6.7630 [12]
NdScSiH1.5 tetrahedral I4/mmm a=4.221 c=16.928 Z=4 [13]
EuSiH1.8 orthorhombic Pnma [6]
GdMnSiH tetragonal P4/nmm [14]
GdFeSiH tetragonal P4/nmm a=3.901 c=7.503 114.2 [14]
GdCoSiH tetragonal P4/nmm a=3.879 c=7.439 111.9 [14]

References

[edit]
  1. ^ a b c Haussermann, U.; Kranak, V. F.; Puhakainen, K. (2011). "Hydrogenous Zintl Phases: Interstitial Versus Polyanionic Hydrides". In Fassler, T. F. (ed.). Zintl Phases: Principles and Recent Developments. pp. 139–161.
  2. ^ a b Kranak, Verina F.; Benson, Daryn E.; Wollmann, Lukas; Mesgar, Milad; Shafeie, Samrand; Grins, Jekabs; Häussermann, Ulrich (2 February 2015). "Hydrogenous Zintl Phase Ba 3 Si 4 H x ( x = 1–2): Transforming Si 4 "Butterfly" Anions into Tetrahedral Moieties". Inorganic Chemistry. 54 (3): 756–764. doi:10.1021/ic501421u. PMID 25247666.
  3. ^ a b Wu, H.; Zhou, W.; Udovic, T. J.; Rush, J. J.; Yildirim, T. (2006-12-07). "Structure and hydrogen bonding in CaSiD 1 + x : Issues about covalent bonding". Physical Review B. 74 (22): 224101. doi:10.1103/PhysRevB.74.224101. ISSN 1098-0121.
  4. ^ a b c d e f g h Häussermann, Ulrich (October 2008). "Coexistence of hydrogen and polyanions in multinary main group element hydrides". Zeitschrift für Kristallographie. 223 (10): 628–635. doi:10.1524/zkri.2008.1016. ISSN 0044-2968. S2CID 96199481.
  5. ^ Wu, Hui; Zhou, Wei; Udovic, Terrence J.; Rush, John J.; Yildirim, Taner (July 2008). "Structural variations and hydrogen storage properties of Ca5Si3 with Cr5B3-type structure". Chemical Physics Letters. 460 (4–6): 432–437. doi:10.1016/j.cplett.2008.06.018.
  6. ^ a b c Armbruster, Markus; Wörle, Michael; Krumeich, Frank; Nesper, Reinhard (October 2009). "Structure and Properties of Hydrogenated Ca, Sr, Ba, and Eu Silicides". Zeitschrift für anorganische und allgemeine Chemie. 635 (12): 1758–1766. doi:10.1002/zaac.200900220.
  7. ^ a b c Evans, Michael J.; Holland, Gregory P.; Garcia-Garcia, Francisco J.; Häussermann, Ulrich (2008-09-10). "Polyanionic Gallium Hydrides from AlB 2 -Type Precursors AeGaE (Ae = Ca, Sr, Ba; E = Si, Ge, Sn)". Journal of the American Chemical Society. 130 (36): 12139–12147. doi:10.1021/ja803664y. ISSN 0002-7863. PMID 18698774.
  8. ^ a b Jehle, Michael; Hoffmann, Anke; Kohlmann, Holger; Scherer, Harald; Röhr, Caroline (February 2015). "The 'sub' metallide oxide hydrides Sr 21 Si 2 O 5 H 12 + x and Ba 21 M 2 O 5 H 12 + x ( M = Zn, Cd, Hg, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi)". Journal of Alloys and Compounds. 623: 164–177. doi:10.1016/j.jallcom.2014.09.228.
  9. ^ Bernardini, F.; Garbarino, G.; Sulpice, A.; Núñez-Regueiro, M.; Gaudin, E.; Chevalier, B.; Méasson, M.-A.; Cano, A.; Tencé, S. (2018-03-12). "Iron-based superconductivity extended to the novel silicide LaFeSiH". Physical Review B. 97 (10): 100504. arXiv:1701.05010. doi:10.1103/PhysRevB.97.100504. hdl:11584/247860. ISSN 2469-9950. S2CID 119004395.
  10. ^ Bernardini, F.; Garbarino, G.; Sulpice, A.; Núñez-Regueiro, M.; Gaudin, E.; Chevalier, B.; Méasson, M.-A.; Cano, A.; Tencé, S. (2018-03-12). "Iron-based superconductivity extended to the novel silicide LaFeSiH". Physical Review B. 97 (10): 100504. arXiv:1701.05010. doi:10.1103/PhysRevB.97.100504. hdl:11584/247860. ISSN 2469-9950. S2CID 119004395.
  11. ^ a b c Tencé, Sophie; Mahon, Tadhg; Gaudin, Etienne; Chevalier, Bernard; Bobet, Jean-Louis; Flacau, Roxana; Heying, Birgit; Rodewald, Ute Ch.; Pöttgen, Rainer (October 2016). "Hydrogenation studies on NdScSi and NdScGe". Journal of Solid State Chemistry. 242: 168–174. doi:10.1016/j.jssc.2016.02.017.
  12. ^ Werwein, Anton; Kohlmann, Holger (2020-07-31). "Synthesis and Crystal Structure of BaLaSi 2 H 0.80". Zeitschrift für anorganische und allgemeine Chemie. 646 (14): 1227–1230. doi:10.1002/zaac.202000152. ISSN 0044-2313. S2CID 219060294.
  13. ^ Tencé, Sophie; Mahon, Tadhg; Gaudin, Etienne; Chevalier, Bernard; Bobet, Jean-Louis; Flacau, Roxana; Heying, Birgit; Rodewald, Ute Ch.; Pöttgen, Rainer (October 2016). "Hydrogenation studies on NdScSi and NdScGe". Journal of Solid State Chemistry. 242: 168–174. doi:10.1016/j.jssc.2016.02.017.
  14. ^ a b c Ovchenkova, I. A.; Nikitin, S. A.; Tereshina, I. S.; Karpenkov, A. Yu.; Ovchenkov, Y. A.; Ćwik, J.; Koshkid’ko, Yu. S.; Drulis, H. (2020-10-14). "Hydrogen-induced extremely large change in Curie temperatures in layered GdTSiH (T = Mn, Fe, Co)". Journal of Applied Physics. 128 (14): 143903. doi:10.1063/5.0020513. ISSN 0021-8979. S2CID 225150947.