Jump to content

7

From Wikipedia, the free encyclopedia
(Redirected from7 (number))
← 6 7 8 →
Cardinalseven
Ordinal7th
(seventh)
Numeral systemseptenary
Factorizationprime
Prime4th
Divisors1, 7
Greek numeralΖ´
Roman numeralVII, vii
Greekprefixhepta-/hept-
Latinprefixseptua-
Binary1112
Ternary213
Senary116
Octal78
Duodecimal712
Hexadecimal716
Greek numeralZ
Amharic
Arabic,Kurdish,Persian٧
Sindhi,Urdu۷
Bengali
Chinese numeralBảy, thất
Devanāgarī
Telugu
Tamil
Hebrewז
Khmer
Thai
Kannada
Malayalam
ArmenianԷ
Babylonian numeral𒐛
Egyptian hieroglyph𓐀
Morse code_ _...

7(seven) is thenatural numberfollowing6and preceding8.It is the onlyprime numberpreceding acube.

As an early prime number in the series ofpositive integers,the number seven has greatly symbolic associations inreligion,mythology,superstitionandphilosophy.The sevenclassical planetsresulted in seven being the number of days in a week.[1]7 is often consideredluckyinWestern cultureand is often seen as highly symbolic. Unlike Western culture, inVietnamese culture,the number seven is sometimes considered unlucky.[citation needed]

Evolution of the Arabic digit

[edit]

For earlyBrahmi numerals,7 was written more or less in one stroke as a curve that looks like an uppercase⟨J⟩vertically inverted (ᒉ). The western Arab peoples' main contribution was to make the longer line diagonal rather than straight, though they showed some tendencies to making the digit more rectilinear. The eastern Arab peoples developed the digit from a form that looked something like 6 to one that looked like an uppercase V. Both modern Arab forms influenced the European form, a two-stroke form consisting of a horizontal upper stroke joined at its right to a stroke going down to the bottom left corner, a line that is slightly curved in some font variants. As is the case with the European digit, theChamandKhmer digitfor 7 also evolved to look like their digit 1, though in a different way, so they were also concerned with making their 7 more different. For the Khmer this often involved adding a horizontal line to the top of the digit.[2]This is analogous to the horizontal stroke through the middle that is sometimes used inhandwritingin the Western world but which is almost never used incomputer fonts.This horizontal stroke is, however, important to distinguish the glyph for seven from the glyph foronein writing that uses a long upstroke in the glyph for 1. In some Greek dialects of the early 12th century the longer line diagonal was drawn in a rather semicircular transverse line.

Onseven-segment displays,7 is the digit with the most common graphic variation (1, 6 and 9 also have variant glyphs). Mostcalculatorsuse three line segments, but onSharp,Casio,and a few other brands of calculators, 7 is written with four line segments because in Japan, Korea and Taiwan 7 is written with a "hook" on the left, as ① in the following illustration.

While the shape of the character for the digit 7 has anascenderin most moderntypefaces,in typefaces withtext figuresthe character usually has adescender(⁊), as, for example, in.

Most people in Continental Europe,[3]Indonesia,[citation needed]and some in Britain, Ireland, and Canada, as well as Latin America, write 7 with a line through the middle (7), sometimes with the top line crooked. The line through the middle is useful to clearly differentiate the digit from the digit one, as the two can appear similar when written in certain styles of handwriting. This form is used in official handwriting rules forprimary schoolin Russia, Ukraine, Bulgaria, Poland, other Slavic countries,[4]France,[5]Italy, Belgium, the Netherlands, Finland,[6]Romania, Germany, Greece,[7]and Hungary.[citation needed]

Mathematics

[edit]

Seven, the fourth prime number, is not only aMersenne prime(since) but also adouble Mersenne primesince the exponent, 3, is itself a Mersenne prime.[8]It is also aNewman–Shanks–Williams prime,[9]aWoodall prime,[10]afactorial prime,[11]aHarshad number,alucky prime,[12]ahappy number(happy prime),[13]asafe prime(the onlyMersenne safe prime), aLeyland prime of the second kindand the fourthHeegner number.[14]

A heptagon inEuclidean spaceis unable to generateuniform tilingsalongside other polygons, like the regularpentagon.However, it is one of fourteen polygons that can fill aplane-vertex tiling,in its case only alongside a regulartriangleand a 42-sided polygon (3.7.42).[29][30]This is also one of twenty-one such configurations from seventeen combinations of polygons, that features the largest and smallest polygons possible.[31][32]
Otherwise, for any regularn-sided polygon, the maximum number of intersecting diagonals (other than through its center) is at most 7.[33]Since the regular heptagon contains fourteendiagonals,the difference between its number of diagonals and its number of sides is seven; the heptagon is the only convex polygon to have a one-to-two ratio between the number of its sides and diagonals (as anyn-sided polygon forn≥ 3 sides, convex or concave, hasn(n– 3)/2diagonals).[34][35]
Seven of eightsemiregular tilingsare Wythoffian (the only exception is theelongated triangular tiling), where there exist three tilings that areregular,all of which are Wythoffian.[37]Seven of nine uniform colorings of the square tiling are also Wythoffian, and between thetriangular tilingandsquare tiling,there are sevennon-Wythoffianuniform colorings of a total twenty-one that belong to regular tilings (allhexagonal tilinguniform colorings are Wythoffian).[38]
In two dimensions, there are precisely seven7-uniformKrotenheerdttilings, with no other suchk-uniform tilings fork> 7, and it is also the onlykfor which the count ofKrotenheerdttilings agrees withk.[39][40]
Graph of the probability distribution of the sum of two six-sided dice
Also, the lowest known dimension for anexotic sphereis the seventh dimension, with a total of 28 differentiable structures; there may exist exotic smooth structures on thefour-dimensional sphere.[51][52]
Inhyperbolic space,7 is the highest dimension for non-simplexhypercompactVinberg polytopesof rankn + 4mirrors, where there is one unique figure with elevenfacets.[53]On the other hand, such figures with rankn + 3mirrors exist in dimensions 4, 5, 6 and 8;notin 7.[54]Hypercompact polytopes with lowest possible rank ofn + 2mirrors exist up through the17thdimension, where there is a single solution as well.[55]

Basic calculations

[edit]
Multiplication 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 50 100 1000
7 ×x 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 350 700 7000
Division 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 ÷x 7 3.5 2.3 1.75 1.4 1.16 1 0.875 0.7 0.7 0.63 0.583 0.538461 0.5 0.46
x÷ 7 0.142857 0.285714 0.428571 0.571428 0.714285 0.857142 1.142857 1.285714 1.428571 1.571428 1.714285 1.857142 2 2.142857
Exponentiation 1 2 3 4 5 6 7 8 9 10 11 12 13
7x 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407
x7 1 128 2187 16384 78125 279936 823543 2097152 4782969 10000000 19487171 35831808 62748517
Radix 1 5 10 15 20 25 50 75 100 125 150 200 250 500 1000 10000 100000 1000000
x7 1 5 137 217 267 347 1017 1357 2027 2367 3037 4047 5057 13137 26267 411047 5643557 113333117

In decimal

[edit]

999,999divided by 7 is exactly142,857.Therefore, when avulgar fractionwith 7 in thedenominatoris converted to adecimalexpansion, the result has the same six-digitrepeating sequence after the decimal point, but the sequence can start with any of those six digits.[62]For example,1/7 = 0.142857 142857...and2/7 = 0.285714 285714....

In fact, if one sorts the digits in the number 142,857 in ascending order, 124578, it is possible to know from which of the digits the decimal part of the number is going to begin with. The remainder of dividing any number by 7 will give the position in the sequence 124578 that the decimal part of the resulting number will start. For example, 628 ÷ 7 =⁠89+5/7;here 5 is the remainder, and would correspond to number 7 in the ranking of the ascending sequence. So in this case,628 ÷ 7 = 89.714285.Another example,5238 ÷ 7 =⁠748+2/7,hence the remainder is 2, and this corresponds to number 2 in the sequence. In this case,5238 ÷ 7 = 748.285714.

In science

[edit]

In psychology

[edit]

Classical antiquity

[edit]

ThePythagoreansinvested particular numbers with unique spiritual properties. The number seven was considered to be particularly interesting because it consisted of the union of the physical (number4) with the spiritual (number3).[66]In Pythagoreannumerologythe number 7 means spirituality.

References from classical antiquity to the number seven include:

Religion and mythology

[edit]

Judaism

[edit]

The number seven forms a widespreadtypologicalpattern withinHebrew scripture,including:

  • Seven days (more preciselyyom) of Creation, leading to the seventh day orSabbath(Genesis 1)
  • Seven-fold vengeance visited on uponCainfor the killing ofAbel(Genesis 4:15)
  • Seven pairs of every clean animal loaded onto the ark by Noah (Genesis 7:2)
  • Seven years of plenty and seven years of famine in Pharaoh's dream (Genesis 41)
  • Seventh son of Jacob,Gad,whose name means good luck (Genesis 46:16)
  • Seven times bullock's blood is sprinkled before God (Leviticus 4:6)
  • Seven nations God told theIsraelitesthey would displace when they entered the land ofIsrael(Deuteronomy 7:1)
  • Seven days (de jure, but de facto eight days) of thePassoverfeast (Exodus 13:3–10)
  • Seven-branchedcandelabrumorMenorah(Exodus 25)
  • Seventrumpetsplayed by seven priests for seven days to bring down the walls of Jericho (Joshua 6:8)
  • Seven things that are detestable to God (Proverbs 6:16–19)
  • Seven Pillars of theHouse of Wisdom(Proverbs 9:1)
  • Seven archangels in the deuterocanonicalBook of Tobit(12:15)

References to the number seven in Jewish knowledge and practice include:

  • Seven divisions of the weekly readings oraliyahof theTorah
  • Sevenaliyoton Shabbat
  • Seven blessings recited under thechuppahduring a Jewish wedding ceremony
  • Seven days of festive meals for a Jewish bride and groom after their wedding, known as Sheva Berachot or Seven Blessings
  • SevenUshpizzinprayers to the Jewish patriarchs during the holiday ofSukkot

Christianity

[edit]

Following the tradition of theHebrew Bible,theNew Testamentlikewise uses the number seven as part of atypologicalpattern:

Seven lampstands inThe Vision of John on PatmosbyJulius Schnorr von Carolsfeld,1860

References to the number seven in Christian knowledge and practice include:

Islam

[edit]

References to the number seven in Islamic knowledge and practice include:

Hinduism

[edit]

References to the number seven in Hindu knowledge and practice include:

Eastern tradition

[edit]

Other references to the number seven in Eastern traditions include:

TheSeven Lucky GodsinJapanese mythology

Other references

[edit]

Other references to the number seven in traditions from around the world include:

See also

[edit]

Notes

[edit]
  1. ^Carl B. Boyer,A History of Mathematics(1968) p.52, 2nd edn.
  2. ^Georges Ifrah,The Universal History of Numbers: From Prehistory to the Invention of the Computertransl. David Bellos et al. London: The Harvill Press (1998): 395, Fig. 24.67
  3. ^Eeva Törmänen (September 8, 2011)."Aamulehti: Opetushallitus harkitsee numero 7 viivan palauttamista".Tekniikka & Talous(in Finnish). Archived fromthe originalon September 17, 2011.RetrievedSeptember 9,2011.
  4. ^"Education writing numerals in grade 1."Archived2008-10-02 at theWayback Machine(Russian)
  5. ^"Example of teaching materials for pre-schoolers"(French)
  6. ^Elli Harju (August 6, 2015).""Nenosen seiska" teki paluun: Tiesitkö, mistä poikkiviiva on peräisin? ".Iltalehti(in Finnish).
  7. ^"Μαθηματικά Α' Δημοτικού"[Mathematics for the First Grade](PDF)(in Greek). Ministry of Education, Research, and Religions. p. 33.RetrievedMay 7,2018.
  8. ^Weisstein, Eric W."Double Mersenne Number".mathworld.wolfram.Retrieved2020-08-06.
  9. ^"Sloane's A088165: NSW primes".The On-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2016-06-01.
  10. ^"Sloane's A050918: Woodall primes".The On-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2016-06-01.
  11. ^"Sloane's A088054: Factorial primes".The On-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2016-06-01.
  12. ^"Sloane's A031157: Numbers that are both lucky and prime".The On-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2016-06-01.
  13. ^"Sloane's A035497: Happy primes".The On-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2016-06-01.
  14. ^"Sloane's A003173: Heegner numbers".The On-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2016-06-01.
  15. ^Sloane, N. J. A.(ed.)."Sequence A000005 (d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2024-04-05.
  16. ^Sloane, N. J. A.(ed.)."Sequence A000217 (Triangular numbers: a(n) as the binomial(n+1,2) equal to n*(n+1)/2 or 0 + 1 + 2 +... + n.)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2024-04-02.
  17. ^Sloane, N. J. A.(ed.)."Sequence A000396 (Perfect numbers k: k is equal to the sum of the proper divisors of k.)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2024-04-02.
  18. ^Wells, D. (1987).The Penguin Dictionary of Curious and Interesting Numbers.London:Penguin Books.pp. 171–174.ISBN0-14-008029-5.OCLC39262447.S2CID118329153.
  19. ^Sloane, N. J. A.(ed.)."Sequence A060283 (Periodic part of decimal expansion of reciprocal of n-th prime (leading 0's moved to end).)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2024-04-02.
  20. ^Sloane, N. J. A.(ed.)."Sequence A000041 (a(n) is the number of partitions of n (the partition numbers).)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2024-04-02.
  21. ^Heyden, Anders; Sparr, Gunnar; Nielsen, Mads; Johansen, Peter (2003-08-02).Computer Vision – ECCV 2002: 7th European Conference on Computer Vision, Copenhagen, Denmark, May 28–31, 2002. Proceedings. Part II.Springer. p. 661.ISBN978-3-540-47967-3.A frieze pattern can be classified into one of the 7 frieze groups...
  22. ^Grünbaum, Branko;Shephard, G. C.(1987). "Section 1.4 Symmetry Groups of Tilings".Tilings and Patterns.New York: W. H. Freeman and Company. pp. 40–45.doi:10.2307/2323457.ISBN0-7167-1193-1.JSTOR2323457.OCLC13092426.S2CID119730123.
  23. ^Sloane, N. J. A.(ed.)."Sequence A004029 (Number of n-dimensional space groups.)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2023-01-30.
  24. ^Sloane, N. J. A.(ed.)."Sequence A000040 (The prime numbers)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2023-02-01.
  25. ^Weisstein, Eric W."Heptagon".mathworld.wolfram.Retrieved2020-08-25.
  26. ^Weisstein, Eric W."7".mathworld.wolfram.Retrieved2020-08-07.
  27. ^Sloane, N. J. A.(ed.)."Sequence A000566 (Heptagonal numbers (or 7-gonal numbers))".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2023-01-09.
  28. ^Sloane, N. J. A.(ed.)."Sequence A003215".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2016-06-01.
  29. ^Grünbaum, Branko;Shepard, Geoffrey(November 1977)."Tilings by Regular Polygons"(PDF).Mathematics Magazine.50(5). Taylor & Francis, Ltd.: 231.doi:10.2307/2689529.JSTOR2689529.S2CID123776612.Zbl0385.51006.
  30. ^Jardine, Kevin."Shield - a 3.7.42 tiling".Imperfect Congruence.Retrieved2023-01-09.3.7.42 as a unit facet in an irregular tiling.
  31. ^Grünbaum, Branko;Shepard, Geoffrey(November 1977)."Tilings by Regular Polygons"(PDF).Mathematics Magazine.50(5). Taylor & Francis, Ltd.: 229–230.doi:10.2307/2689529.JSTOR2689529.S2CID123776612.Zbl0385.51006.
  32. ^Dallas, Elmslie William(1855)."Part II. (VII): Of the Circle, with its Inscribed and Circumscribed Figures − Equal Division and the Construction of Polygons".The Elements of Plane Practical Geometry.London: John W. Parker & Son, West Strand. p. 134.
    "...It will thus be found that, including the employment of the same figures, there are seventeen different combinations of regular polygons by which this may be effected; namely, —
    When three polygons are employed, there are ten ways; viz.,6,6,63.7.423,8,243,9,183,10,153,12,124,5,204,6,124,8,85,5,10.
    With four polygons there are four ways, viz.,4,4,4,43,3,4,123,3,6,63,4,4,6.
    With five polygons there are two ways, viz.,3,3,3,4,43,3,3,3,6.
    With six polygons one way — all equilateral triangles [3.3.3.3.3.3]. "
    Note: the only four other configurations from the same combinations of polygons are:3.4.3.12,(3.6)2,3.4.6.4,and3.3.4.3.4.
  33. ^Poonen, Bjorn;Rubinstein, Michael (1998)."The Number of Intersection Points Made by the Diagonals of a Regular Polygon"(PDF).SIAM Journal on Discrete Mathematics.11(1). Philadelphia:Society for Industrial and Applied Mathematics:135–156.arXiv:math/9508209.doi:10.1137/S0895480195281246.MR1612877.S2CID8673508.Zbl0913.51005.
  34. ^Sloane, N. J. A.(ed.)."Sequence A307681 (difference between the number of sides and the number of diagonals of a convex n-gon)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.
  35. ^Sloane, N. J. A.(ed.)."Sequence A000096 (a(n) = n*(n+3)/2 = the number of diagonals of an n-gon)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.
  36. ^Coxeter, H. S. M.(1999)."Chapter 3: Wythoff's Construction for Uniform Polytopes".The Beauty of Geometry: Twelve Essays.Mineola, NY: Dover Publications. pp. 326–339.ISBN9780486409191.OCLC41565220.S2CID227201939.Zbl0941.51001.
  37. ^Grünbaum, Branko;Shephard, G. C.(1987). "Section 2.1: Regular and uniform tilings".Tilings and Patterns.New York: W. H. Freeman and Company. pp. 62–64.doi:10.2307/2323457.ISBN0-7167-1193-1.JSTOR2323457.OCLC13092426.S2CID119730123.
  38. ^Grünbaum, Branko;Shephard, G. C.(1987). "Section 2.9 Archimedean and uniform colorings".Tilings and Patterns.New York: W. H. Freeman and Company. pp. 102–107.doi:10.2307/2323457.ISBN0-7167-1193-1.JSTOR2323457.OCLC13092426.S2CID119730123.
  39. ^Sloane, N. J. A.(ed.)."Sequence A068600 (Number of n-uniform tilings having n different arrangements of polygons about their vertices.)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2023-01-09.
  40. ^Grünbaum, Branko;Shepard, Geoffrey(November 1977)."Tilings by Regular Polygons"(PDF).Mathematics Magazine.50(5). Taylor & Francis, Ltd.: 236.doi:10.2307/2689529.JSTOR2689529.S2CID123776612.Zbl0385.51006.
  41. ^Pisanski, Tomaž;Servatius, Brigitte(2013)."Section 1.1: Hexagrammum Mysticum".Configurations from a Graphical Viewpoint.Birkhäuser Advanced Texts (1 ed.). Boston, MA:Birkhäuser.pp. 5–6.doi:10.1007/978-0-8176-8364-1.ISBN978-0-8176-8363-4.OCLC811773514.Zbl1277.05001.
  42. ^Pisanski, Tomaž;Servatius, Brigitte(2013)."Chapter 5.3: Classical Configurations".Configurations from a Graphical Viewpoint.Birkhäuser Advanced Texts (1 ed.). Boston, MA:Birkhäuser.pp. 170–173.doi:10.1007/978-0-8176-8364-1.ISBN978-0-8176-8363-4.OCLC811773514.Zbl1277.05001.
  43. ^Szilassi, Lajos (1986)."Regular toroids"(PDF).Structural Topology.13:74.Zbl0605.52002.
  44. ^Császár, Ákos(1949)."A polyhedron without diagonals"(PDF).Acta Scientiarum Mathematicarum (Szeged).13:140–142. Archived fromthe original(PDF)on 2017-09-18.
  45. ^Sloane, N. J. A.(ed.)."Sequence A004031 (Number of n-dimensional crystal systems.)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2023-01-30.
  46. ^Wang, Gwo-Ching; Lu, Toh-Ming (2014)."Crystal Lattices and Reciprocal Lattices".RHEED Transmission Mode and Pole Figures(1 ed.). New York:Springer Publishing.pp. 8–9.doi:10.1007/978-1-4614-9287-0_2.ISBN978-1-4614-9286-3.S2CID124399480.
  47. ^Sloane, N. J. A.(ed.)."Sequence A256413 (Number of n-dimensional Bravais lattices)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2023-01-30.
  48. ^Messer, Peter W. (2002)."Closed-Form Expressions for Uniform Polyhedra and Their Duals"(PDF).Discrete & Computational Geometry.27(3).Springer:353–355, 372–373.doi:10.1007/s00454-001-0078-2.MR1921559.S2CID206996937.Zbl1003.52006.
  49. ^Massey, William S.(December 1983)."Cross products of vectors in higher dimensional Euclidean spaces"(PDF).The American Mathematical Monthly.90(10).Taylor & Francis, Ltd:697–701.doi:10.2307/2323537.JSTOR2323537.S2CID43318100.Zbl0532.55011.Archived fromthe original(PDF)on 2021-02-26.Retrieved2023-02-23.
  50. ^Baez, John C.(2002)."The Octonions".Bulletin of the American Mathematical Society.39(2).American Mathematical Society:152–153.doi:10.1090/S0273-0979-01-00934-X.MR1886087.S2CID586512.
  51. ^Behrens, M.; Hill, M.; Hopkins, M. J.; Mahowald, M. (2020)."Detecting exotic spheres in low dimensions using coker J".Journal of the London Mathematical Society.101(3).London Mathematical Society:1173.arXiv:1708.06854.doi:10.1112/jlms.12301.MR4111938.S2CID119170255.Zbl1460.55017.
  52. ^Sloane, N. J. A.(ed.)."Sequence A001676 (Number of h-cobordism classes of smooth homotopy n-spheres.)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2023-02-23.
  53. ^Tumarkin, Pavel; Felikson, Anna (2008)."Ond-dimensional compact hyperbolic Coxeter polytopes withd + 4facets "(PDF).Transactions of the Moscow Mathematical Society.69.Providence, R.I.:American Mathematical Society(Translation): 105–151.doi:10.1090/S0077-1554-08-00172-6.MR2549446.S2CID37141102.Zbl1208.52012.
  54. ^Tumarkin, Pavel (2007)."Compact hyperbolic Coxeter n-polytopes with n + 3 facets".The Electronic Journal of Combinatorics.14(1): 1–36 (R69).doi:10.37236/987.MR2350459.S2CID221033082.Zbl1168.51311.
  55. ^Tumarkin, P. V. (2004). "Hyperbolic Coxeter N-Polytopes with n+2 Facets".Mathematical Notes.75(6): 848–854.arXiv:math/0301133.doi:10.1023/b:matn.0000030993.74338.dd.MR2086616.S2CID15156852.Zbl1062.52012.
  56. ^Antoni, F. de; Lauro, N.; Rizzi, A. (2012-12-06).COMPSTAT: Proceedings in Computational Statistics, 7th Symposium held in Rome 1986.Springer Science & Business Media. p. 13.ISBN978-3-642-46890-2....every catastrophe can be composed from the set of so called elementary catastrophes, which are of seven fundamental types.
  57. ^Cohen, Henri (2007). "Consequences of the Hasse–Minkowski Theorem".Number Theory Volume I: Tools and Diophantine Equations.Graduate Texts in Mathematics.Vol. 239 (1st ed.).Springer.pp. 312–314.doi:10.1007/978-0-387-49923-9.ISBN978-0-387-49922-2.OCLC493636622.Zbl1119.11001.
  58. ^Sloane, N. J. A.(ed.)."Sequence A116582 (Numbers from Bhargava's 33 theorem.)".TheOn-Line Encyclopedia of Integer Sequences.OEIS Foundation.Retrieved2024-02-03.
  59. ^Weisstein, Eric W."Dice".mathworld.wolfram.Retrieved2020-08-25.
  60. ^"Millennium Problems | Clay Mathematics Institute".claymath.org.Retrieved2020-08-25.
  61. ^"Poincaré Conjecture | Clay Mathematics Institute".2013-12-15. Archived fromthe originalon 2013-12-15.Retrieved2020-08-25.
  62. ^Bryan Bunch,The Kingdom of Infinite Number.New York: W. H. Freeman & Company (2000): 82
  63. ^Gonzalez, Robbie (4 December 2014)."Why Do People Love The Number Seven?".Gizmodo.Retrieved20 February2022.
  64. ^Bellos, Alex."The World's Most Popular Numbers [Excerpt]".Scientific American.Retrieved20 February2022.
  65. ^Kubovy, Michael; Psotka, Joseph (May 1976)."The predominance of seven and the apparent spontaneity of numerical choices".Journal of Experimental Psychology: Human Perception and Performance.2(2): 291–294.doi:10.1037/0096-1523.2.2.291.Retrieved20 February2022.
  66. ^"Number symbolism – 7".
  67. ^"Nāṣir-i Khusraw",An Anthology of Philosophy in Persia,I.B.Tauris, pp. 305–361, 2001,doi:10.5040/9780755610068.ch-008,ISBN978-1-84511-542-5,retrieved2020-11-17
  68. ^Surah Yusuf12:46
  69. ^Rajarajan, R.K.K. (2020)."Peerless Manifestations of Devī".Carcow Indological Studies (Cracow, Poland).XXII.1: 221–243.doi:10.12797/CIS.22.2020.01.09.S2CID226326183.
  70. ^Rajarajan, R.K.K. (2020)."Sempiternal" Pattiṉi ": Archaic Goddess of the vēṅkai-tree to Avant-garde Acaṉāmpikai".Studia Orientalia Electronica (Helsinki, Finland).8(1): 120–144.doi:10.23993/store.84803.S2CID226373749.
  71. ^The Origin of the Mystical Number Seven in Mesopotamian Culture: Division by Seven in the Sexagesimal Number System
  72. ^"Encyclopædia Britannica"Number Symbolism"".Britannica.Retrieved2012-09-07.
  73. ^Klimka, Libertas (2012-03-01). "Senosios baltų mitologijos ir religijos likimas".Lituanistica.58(1).doi:10.6001/lituanistica.v58i1.2293.ISSN0235-716X.
  74. ^"Chapter I. The Creative Thesis of Perfection by William S. Sadler, Jr. – Urantia Book – Urantia Foundation".urantia.org.17 August 2011.
  75. ^Yemaya.Santeria Church of the Orishas. Retrieved 25 November 2022
  76. ^Ergil, Leyla Yvonne (2021-06-10)."Turkey's talisman superstitions: Evil eyes, pomegranates and more".Daily Sabah.Retrieved2023-04-05.

References

[edit]