Jump to content

Bcl-2

From Wikipedia, the free encyclopedia

BCL2
Available structures
PDBOrtholog search:PDBeRCSB
Identifiers
AliasesBCL2,Bcl-2, PPP1R50, B-cell CLL/lymphoma 2, apoptosis regulator, BCL2 apoptosis regulator, Genes, bcl-2
External IDsOMIM:151430;MGI:88138;HomoloGene:527;GeneCards:BCL2;OMA:BCL2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000633
NM_000657

NM_009741
NM_177410

RefSeq (protein)

NP_000624
NP_000648

NP_033871
NP_803129

Location (UCSC)Chr 18: 63.12 – 63.32 MbChr 1: 106.47 – 106.64 Mb
PubMedsearch[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Bcl-2,encoded in humans by theBCL2gene,is the founding member of theBcl-2 familyofregulator proteins.BCL2 blocks programmed cell death (apoptosis)[5]while other BCL2 family members can either inhibit or induce it.[6][7]It was the first apoptosis regulator identified in any organism.[8]

Bcl-2 derives its name fromB-cell lymphoma 2,as it is the second member of a range of proteins initially described inchromosomal translocationsinvolvingchromosomes14and18infollicular lymphomas.Orthologs[9](such asBcl2in mice) have been identified in numerousmammalsfor which completegenomedata are available.

LikeBCL3,BCL5,BCL6,BCL7A,BCL9,andBCL10,it has clinical significance inlymphoma.

Isoforms[edit]

The twoisoformsof Bcl-2, Isoform 1, and Isoform 2, exhibit a similar fold. However, results in the ability of these isoforms to bind to theBADandBAKproteins, as well as in the structural topology andelectrostatic potentialof the binding groove, suggest differences in antiapoptotic activity for the twoisoforms.[10]

Function[edit]

BCL-2 is localized to the outer membrane ofmitochondria,where it plays an important role in promoting cellular survival and inhibiting the actions of pro-apoptotic proteins. The pro-apoptotic proteins in the BCL-2 family, includingBaxandBak,normally act on the mitochondrial membrane to promote permeabilization and release ofcytochrome candROS,that are important signals in the apoptosis cascade. These pro-apoptotic proteins are in turn activated by BH3-only proteins, and are inhibited by the function of BCL-2 and its relativeBCL-Xl.[11]

There are additional non-canonical roles of BCL-2 that are being explored. BCL-2 is known to regulate mitochondrial dynamics, and is involved in the regulation of mitochondrial fusion and fission. Additionally, in pancreatic beta-cells, BCL-2 and BCL-Xl are known to be involved in controlling metabolic activity and insulin secretion, with inhibition of BCL-2/Xl showing increasing metabolic activity,[12]but also additional ROS production; this suggests it has a protective metabolic effect in conditions of high demand.[13]

Role in disease[edit]

Damage to the Bcl-2 gene has been identified as a cause of a number ofcancers,includingmelanoma,breast,prostate,chronic lymphocytic leukemia,andlung cancer,and a possible cause ofschizophreniaandautoimmunity.It is also a cause of resistance to cancer treatments.[14]

Cancer[edit]

Cancer can be seen as a disturbance in thehomeostaticbalance between cell growth and cell death. Over-expression of anti-apoptotic genes, and under-expression of pro-apoptotic genes, can result in the lack of cell death that is characteristic of cancer. An example can be seen inlymphomas.The over-expression of the anti-apoptotic Bcl-2 protein in lymphocytes alone does not cause cancer. But simultaneous over-expression of Bcl-2 and the proto-oncogenemycmay produce aggressiveB-cellmalignancies including lymphoma.[15]Infollicular lymphoma,achromosomal translocationcommonly occurs between the fourteenth and the eighteenthchromosomes– t(14;18) – which places the Bcl-2 gene from chromosome 18 next to theimmunoglobulinheavy chain locus on chromosome 14. This fusion gene is deregulated, leading to the transcription of excessively high levels of Bcl-2.[16]This decreases the propensity of these cells for apoptosis. Bcl-2 expression is frequent insmall cell lung cancer,accounting for 76% cases in one study.[17]

Auto-immune diseases[edit]

Apoptosisplays an active role in regulating the immune system. When it is functional, it can cause immune unresponsiveness to self-antigensvia both central and peripheral tolerance. In the case of defective apoptosis, it may contribute to etiological aspects of autoimmune diseases.[18]The autoimmune diseasetype 1 diabetescan be caused by defective apoptosis, which leads to aberrant T cellAICDand defective peripheral tolerance. Due to the fact thatdendritic cellsare the immune system's most importantantigen-presenting cells,their activity must be tightly regulated by mechanisms such as apoptosis. Researchers have found that mice containing dendritic cells that areBim-/-, thus unable to induce effective apoptosis, haveautoimmune diseasesmore so than those that have normal dendritic cells.[18]Other studies have shown that dendritic cell lifespan may be partly controlled by a timer dependent on anti-apoptotic Bcl-2.[18]

Other[edit]

Apoptosis plays an important role in regulating a variety of diseases. For example, schizophrenia is a psychiatric disorder in which an abnormal ratio of pro- and anti-apoptotic factors may contribute towards pathogenesis.[19]Some evidence suggests that this may result from abnormal expression of Bcl-2 and increased expression ofcaspase-3.[19]

Diagnostic use[edit]

Antibodies to Bcl-2 can be used withimmunohistochemistryto identify cells containing the antigen. In healthy tissue, these antibodies react with B-cells in themantle zone,as well as someT-cells.However, positive cells increase considerably infollicular lymphoma,as well as many other forms of cancer. In some cases, the presence or absence of Bcl-2 staining inbiopsiesmay be significant for the patient'sprognosisor likelihood ofrelapse.[20]

Targeted therapies[edit]

Targeted and selective Bcl-2 inhibitors that have been in development or are currently in the clinic include:

Oblimersen[edit]

An antisenseoligonucleotidedrug,oblimersen(G3139), was developed byGenta Incorporatedto target Bcl-2. AnantisenseDNA or RNA strand is non-coding and complementary to the coding strand (which is the template for producing respectively RNA or protein). Anantisense drugis a short sequence of RNA that hybridises with and inactivates mRNA, preventing theproteinfrom being formed.

Humanlymphomacellproliferation (with t(14;18) translocation) could be inhibited byantisense RNAtargeted at the startcodonregion of Bcl-2mRNA.In vitrostudies led to the identification of Genasense, which is complementary to the first 6 codons of Bcl-2 mRNA.[21]

These showed successful results in Phase I/II trials for lymphoma. A large Phase III trial was launched in 2004.[22]As of 2016, the drug had not been approved and its developer was out of business.[23]

ABT-737 and navitoclax (ABT-263)[edit]

In the mid-2000s,Abbott Laboratoriesdeveloped a novel inhibitor of Bcl-2,Bcl-xLand Bcl-w, known asABT-737.This compound is part of a group of BH3 mimetic small molecule inhibitors (SMI) that target these Bcl-2 family proteins, but not A1 orMcl-1.ABT-737 is superior to previous BCL-2 inhibitors given its higher affinity for Bcl-2, Bcl-xL and Bcl-w.In vitrostudies showed that primary cells from patients with B-cell malignancies are sensitive to ABT-737.[24]ABT-737 does not directly induce apoptosis; it enhances the effects of apoptotic signals and causes single-agent-mechanism-based killing of cells in small-cell lung carcinoma and lymphoma lines.[citation needed]

In animal models, it improves survival, causes tumor regression and cures a high percentage of mice.[25]In preclinical studies utilizingpatient xenografts,ABT-737 showed efficacy for treating lymphoma and other blood cancers.[26]Because of its unfavorable pharmacologic properties ABT-737 is not appropriate for clinical trials, while its orallybioavailablederivativenavitoclax(ABT-263) has similar activity onsmall cell lung cancer(SCLC) cell lines and has entered clinical trials.[27]While clinical responses with navitoclax were promising, mechanistic dose-limitingthrombocytopeniawas observed in patients under treatment due to Bcl-xL inhibition inplatelets.[28][29][30]

Venetoclax (ABT-199)[edit]

Due to dose-limiting thrombocytopenia of navitoclax as a result of Bcl-xL inhibition,Abbviesuccessfully developed the highly selective inhibitorvenetoclax(ABT-199), which inhibits Bcl-2, but not Bcl-xL or Bcl-w.[31]Clinical trials studied the effects of venetoclax, a BH3-mimetic drug designed to block the function of the Bcl-2 protein, on patients withchronic lymphocytic leukemia(CLL).[32][33]Good responses have been reported and thrombocytopenia was no longer observed.[33][34]A phase 3 trial started in Dec 2015.[35] It was approved by theUS FDAin April 2016 as a second-line treatment for CLL associated with 17-p deletion.[36]This was the first FDA approval of a BCL-2 inhibitor.[36]In June 2018, the FDA broadened the approval for anyone with CLL or small lymphocytic lymphoma, with or without 17p deletion, still as a second-line treatment.[37]

Sonrotoclax (BGB-11417)[edit]

Venetoclax drug resistance has been noted with the G101V mutation in BCL-2 observed in relapsing patients.[38]Sonrotoclax shows greater tumor growth inhibition in hematologic tumor models than venetoclax and inhibits venetoclax-resistant BCL-2 variants. Sonrotoclax is under clinical investigation as a monotherapy and in combination with other anticancer agents.[39]


Interactions[edit]

Overview of signal transduction pathways involved inapoptosis

Bcl-2 has been shown tointeractwith:

See also[edit]

References[edit]

  1. ^abcGRCh38: Ensembl release 89: ENSG00000171791Ensembl,May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000057329Ensembl,May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ (22 November 1990)."Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death".Nature.348(6299): 334–336.doi:10.1038/348334a0.ISSN0028-0836.PMID2250705.
  6. ^Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (November 1984). "Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation".Science.226(4678): 1097–9.Bibcode:1984Sci...226.1097T.doi:10.1126/science.6093263.PMID6093263.
  7. ^Cleary ML, Smith SD, Sklar J (October 1986). "Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation".Cell.47(1): 19–28.doi:10.1016/0092-8674(86)90362-4.PMID2875799.S2CID31493780.
  8. ^Kelly GL, Strasser A (2020)."Toward Targeting Antiapoptotic MCL-1 for Cancer Therapy".Annual Review of Cancer Biology.4:299–313.doi:10.1146/annurev-cancerbio-030419-033510.hdl:11343/252362.
  9. ^"OrthoMaM phylogenetic marker: Bcl-2 coding sequence".Archived fromthe originalon 24 September 2015.Retrieved20 December2009.
  10. ^PDB:1G5M​;Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW (March 2001)."Solution structure of the antiapoptotic protein bcl-2".Proceedings of the National Academy of Sciences of the United States of America.98(6): 3012–7.Bibcode:2001PNAS...98.3012P.doi:10.1073/pnas.041619798.PMC30598.PMID11248023.
  11. ^Hardwick JM, Soane L (2013)."Multiple functions of BCL-2 family proteins".Cold Spring Harb Perspect Biol.5(2): a008722.doi:10.1101/cshperspect.a008722.PMC3552500.PMID23378584.
  12. ^Luciani DS, White SA, Widenmaier SB, Saran VV, Taghizadeh F, Hu X, Allard MF, Johnson JD (2013)."Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic ß-cells".Diabetes.62(1): 170–182.doi:10.2337/db11-1464.PMC3526034.PMID22933114.
  13. ^Aharoni-Simon M, Shumiatcher R, Yeung A, Shih AZ, Dolinsky VW, Doucette CA, Luciani DS (2016)."Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic ß-Cells".Endocrinology.157(6): 2270–2281.doi:10.1210/en.2015-1964.PMID27070098.
  14. ^Garcia-Aranda M, Perez-Ruiz E, Redondo M (December 2018)."Bcl-2 Inhibition to Overcome Resistance to Chemo- and Immunotherapy".International Journal of Molecular Sciences.19(12): 3950.doi:10.3390/ijms19123950.PMC6321604.PMID30544835.
  15. ^Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK, Fernandes DJ (April 2007)."Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA".Blood.109(7): 3069–75.doi:10.1182/blood-2006-08-043257.PMC1852223.PMID17179226.
  16. ^Vaux DL, Cory S, Adams JM (September 1988). "Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells".Nature.335(6189): 440–2.Bibcode:1988Natur.335..440V.doi:10.1038/335440a0.PMID3262202.S2CID23593952.
  17. ^Kaiser U, Schilli M, Haag U, Neumann K, Kreipe H, Kogan E, Havemann K (August 1996). "Expression of bcl-2 — protein in small cell lung cancer".Lung Cancer.15(1): 31–40.doi:10.1016/0169-5002(96)00568-5.PMID8865121.
  18. ^abcLi A, Ojogho O, Escher A (2006)."Saving death: apoptosis for intervention in transplantation and autoimmunity".Clinical & Developmental Immunology.13(2–4): 273–82.doi:10.1080/17402520600834704.PMC2270759.PMID17162368.
  19. ^abGlantz LA, Gilmore JH, Lieberman JA, Jarskog LF (January 2006). "Apoptotic mechanisms and the synaptic pathology of schizophrenia".Schizophrenia Research.81(1): 47–63.doi:10.1016/j.schres.2005.08.014.PMID16226876.S2CID22388783.
  20. ^Leong AS, Cooper K, Leong FJ (2003).Manual of Diagnostic Cytology(2 ed.). Greenwich Medical Media, Ltd. pp. XX.ISBN978-1-84110-100-2.
  21. ^Dias N, Stein CA (November 2002). "Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides".European Journal of Pharmaceutics and Biopharmaceutics.54(3): 263–9.doi:10.1016/S0939-6411(02)00060-7.PMID12445555.
  22. ^Mavromatis BH, Cheson BD (June 2004). "Novel therapies for chronic lymphocytic leukemia".Blood Reviews.18(2): 137–48.doi:10.1016/S0268-960X(03)00039-0.PMID15010151.
  23. ^"Genasense (oblimersen sodium) FDA Approval Status - Drugs".drugs.Retrieved11 February2016.
  24. ^Vogler M, Dinsdale D, Dyer MJ, Cohen GM (March 2009)."Bcl-2 inhibitors: small molecules with a big impact on cancer therapy".Cell Death & Differentiation.16(3): 360–367.doi:10.1038/cdd.2008.137.hdl:2381/4756.PMID18806758.S2CID24538054.
  25. ^Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. (June 2005). "An inhibitor of Bcl-2 family proteins induces regression of solid tumours".Nature.435(7042): 677–81.Bibcode:2005Natur.435..677O.doi:10.1038/nature03579.PMID15902208.S2CID4335635.
  26. ^Hann CL, Daniel VC, Sugar EA, Dobromilskaya I, Murphy SC, Cope L, Lin X, Hierman JS, Wilburn DL, Watkins DN, Rudin CM (April 2008)."Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer".Cancer Research.68(7): 2321–8.doi:10.1158/0008-5472.can-07-5031.PMC3159963.PMID18381439.
  27. ^Hauck P, Chao BH, Litz J, Krystal GW (1 April 2009). "Alterations in the Noxa/Mcl-1 axis determine sensitivity of small cell lung cancer to the BH3 mimetic ABT-737".Molecular Cancer Therapeutics.8(4): 883–892.doi:10.1158/1535-7163.MCT-08-1118.PMID19372561.S2CID19245418.
  28. ^Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D, Hann CL, McKeegan EM, Litvinovich E, Hemken PM, Dive C, Enschede SH, Nolan C, Chiu YL, Busman T, Xiong H, Krivoshik AP, Humerickhouse R, Shapiro GI, Rudin CM (March 2011)."Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors".Journal of Clinical Oncology.29(7): 909–16.doi:10.1200/JCO.2010.31.6208.PMC4668282.PMID21282543.
  29. ^Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, Camidge DR, Chu Q, Giaccone G, Khaira D, Ramalingam SS, Ranson MR, Dive C, McKeegan EM, Chyla BJ, Dowell BL, Chakravartty A, Nolan CE, Rudersdorf N, Busman TA, Mabry MH, Krivoshik AP, Humerickhouse RA, Shapiro GI, Gandhi L (June 2012)."Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer".Clinical Cancer Research.18(11): 3163–9.doi:10.1158/1078-0432.CCR-11-3090.PMC3715059.PMID22496272.
  30. ^Kaefer A, Yang J, Noertersheuser P, Mensing S, Humerickhouse R, Awni W, Xiong H (September 2014). "Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia".Cancer Chemotherapy and Pharmacology.74(3): 593–602.doi:10.1007/s00280-014-2530-9.PMID25053389.S2CID10685695.
  31. ^Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, Cortes J, DeAngelo DJ, Debose L, Mu H, Döhner H, Gaidzik VI, Galinsky I, Golfman LS, Haferlach T, Harutyunyan KG, Hu J, Leverson JD, Marcucci G, Müschen M, Newman R, Park E, Ruvolo PP, Ruvolo V, Ryan J, Schindela S, Zweidler-McKay P, Stone RM, Kantar gian H, Andreeff M, Konopleva M, Letai AG (March 2014)."Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia".Cancer Discovery.4(3): 362–75.doi:10.1158/2159-8290.CD-13-0609.PMC3975047.PMID24346116.
  32. ^Liao G (12 August 2011)."ABT-199 BH-3 Mimetic Enters Phase Ia Trial For Chronic Lymphocytic Leukemia".Asian Scientist. Archived fromthe originalon 18 July 2012.Retrieved11 February2016.
  33. ^abRoberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, Kipps TJ, Anderson MA, Brown JR, Gressick L, Wong S, Dunbar M, Zhu M, Desai MB, Cerri E, Heitner Enschede S, Humerickhouse RA, Wierda WG, Seymour JF (January 2016)."Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia".The New England Journal of Medicine.374(4): 311–22.doi:10.1056/NEJMoa1513257.PMC7107002.PMID26639348.
  34. ^"'Miracle drug cured my cancer!': Amazing three-week recovery of Staffordshire sufferer ".Stoke Sentinel.Archived fromthe originalon 12 May 2014.Retrieved10 May2014.
  35. ^Smith M (7 December 2015)."Hard-to-Treat CLL Yields to Investigational Drug".
  36. ^abBankhead C (11 April 2016)."FDA Approves AbbVie's BCL-2 Targeting Drug for CLL".Medpage Today.
  37. ^"FDA approves venetoclax for CLL or SLL, with or without 17p deletion, after one prior therapy".U.S. Food and Drug Administration. 24 March 2020.
  38. ^Blombery P, Anderson MA, Gong Jn, Thijssen R, Birkinshaw RW, Thompson ER, Teh CE, Nguyen T, Xu Z, Flensburg C, Lew TE, Majewski IJ, Gray DH, Westerman DA, Tam CS, Seymour JF, Czabotar PE, Huang DC, Roberts AW (1 March 2019). "Acquisition of the Recurrent Gly101Val Mutation in BCL2 Confers Resistance to Venetoclax in Patients with Progressive Chronic Lymphocytic Leukemia".Cancer Discovery.9(3): 342–353.doi:10.1158/2159-8290.CD-18-1119.
  39. ^Liu J, Li S, Wang Q, Feng Y, Xing H, Yang X, Guo Y, Guo Y, Sun H, Liu X, Yang S, Mei Z, Zhu Y, Cheng Z, Chen S, Xu M, Zhang W, Wan N, Wang J, Ma Y, Zhang S, Luan X, Xu A, Li L, Wang H, Yang X, Hong Y, Xue H, Yuan X, Hu N, Song X, Wang Z, Liu X, Wang L, Liu Y (2 May 2024)."Sonrotoclax overcomes BCL2 G101V mutation–induced venetoclax resistance in preclinical models of hematologic malignancy".Blood.143(18): 1825–1836.doi:10.1182/blood.2023019706.PMC11076911.
  40. ^abcdLin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (February 2004)."Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3".Cell.116(4): 527–40.doi:10.1016/s0092-8674(04)00162-x.PMID14980220.S2CID17808479.
  41. ^Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long YQ, Roller PP, Yang D, Wang S (December 2001). "Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening".Journal of Medicinal Chemistry.44(25): 4313–24.doi:10.1021/jm010016f.PMID11728179.
  42. ^Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC (October 1997)."p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum".The Journal of Cell Biology.139(2): 327–38.doi:10.1083/jcb.139.2.327.PMC2139787.PMID9334338.
  43. ^Zhang H, Nimmer P, Rosenberg SH, Ng SC, Joseph M (August 2002). "Development of a high-throughput fluorescence polarization assay for Bcl-x(L)".Analytical Biochemistry.307(1): 70–5.doi:10.1016/s0003-2697(02)00028-3.PMID12137781.
  44. ^abcdefChen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (February 2005)."Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function".Molecular Cell.17(3): 393–403.doi:10.1016/j.molcel.2004.12.030.PMID15694340.
  45. ^O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S, Huang DC (January 1998)."Bim: a novel member of the Bcl-2 family that promotes apoptosis".The EMBO Journal.17(2): 384–95.doi:10.1093/emboj/17.2.384.PMC1170389.PMID9430630.
  46. ^Hsu SY, Lin P, Hsueh AJ (September 1998)."BOD (Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members".Molecular Endocrinology.12(9): 1432–40.doi:10.1210/mend.12.9.0166.PMID9731710.
  47. ^Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (November 1998)."Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein".Journal of Virology.72(11): 8586–96.doi:10.1128/JVI.72.11.8586-8596.1998.PMC110269.PMID9765397.
  48. ^Real PJ, Cao Y, Wang R, Nikolovska-Coleska Z, Sanz-Ortiz J, Wang S, Fernandez-Luna JL (November 2004). "Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2".Cancer Research.64(21): 7947–53.doi:10.1158/0008-5472.CAN-04-0945.PMID15520201.S2CID11807428.
  49. ^Puthalakath H, Villunger A, O'Reilly LA, Beaumont JG, Coultas L, Cheney RE, Huang DC, Strasser A (September 2001). "Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis".Science.293(5536): 1829–32.Bibcode:2001Sci...293.1829P.doi:10.1126/science.1062257.PMID11546872.S2CID5638023.
  50. ^abQin W, Hu J, Guo M, Xu J, Li J, Yao G, Zhou X, Jiang H, Zhang P, Shen L, Wan D, Gu J (August 2003). "BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis".Biochemical and Biophysical Research Communications.308(2): 379–85.doi:10.1016/s0006-291x(03)01387-1.PMID12901880.
  51. ^abBoyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, D'Sa-Eipper C, Chinnadurai G (October 1994). "Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins".Cell.79(2): 341–51.doi:10.1016/0092-8674(94)90202-X.PMID7954800.S2CID38609845.
  52. ^Ray R, Chen G, Vande Velde C, Cizeau J, Park JH, Reed JC, Gietz RD, Greenberg AH (January 2000)."BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites".The Journal of Biological Chemistry.275(2): 1439–48.doi:10.1074/jbc.275.2.1439.PMID10625696.
  53. ^Yasuda M, Han JW, Dionne CA, Boyd JM, Chinnadurai G (February 1999)."BNIP3 Alpha: a human homolog of mitochondrial proapoptotic protein BNIP3".Cancer Research.59(3): 533–7.PMID9973195.
  54. ^Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (January 1995)."Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death".Cell.80(2): 285–91.doi:10.1016/0092-8674(95)90411-5.PMID7834748.S2CID10343291.
  55. ^abKomatsu K, Miyashita T, Hang H, Hopkins KM, Zheng W, Cuddeback S, Yamada M, Lieberman HB, Wang HG (January 2000). "Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis".Nature Cell Biology.2(1): 1–6.doi:10.1038/71316.PMID10620799.S2CID52847351.
  56. ^Hoetelmans RW (June 2004). "Nuclear partners of Bcl-2: Bax and PML".DNA and Cell Biology.23(6): 351–4.doi:10.1089/104454904323145236.PMID15231068.
  57. ^Oltvai ZN, Milliman CL, Korsmeyer SJ (August 1993). "Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death".Cell.74(4): 609–19.doi:10.1016/0092-8674(93)90509-O.PMID8358790.S2CID31151334.
  58. ^Gillissen B, Essmann F, Graupner V, Stärck L, Radetzki S, Dörken B, Schulze-Osthoff K, Daniel PT (July 2003)."Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway".The EMBO Journal.22(14): 3580–90.doi:10.1093/emboj/cdg343.PMC165613.PMID12853473.
  59. ^Wang HG, Rapp UR, Reed JC (November 1996)."Bcl-2 targets the protein kinase Raf-1 to mitochondria".Cell.87(4): 629–38.doi:10.1016/s0092-8674(00)81383-5.PMID8929532.S2CID16559750.
  60. ^Gil-Parrado S, Fernández-Montalván A, Assfalg-Machleidt I, Popp O, Bestvater F, Holloschi A, Knoch TA, Auerswald EA, Welsh K, Reed JC, Fritz H, Fuentes-Prior P, Spiess E, Salvesen GS, Machleidt W (July 2002)."Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members".The Journal of Biological Chemistry.277(30): 27217–26.doi:10.1074/jbc.M202945200.PMID12000759.
  61. ^Poulaki V, Mitsiades N, Romero ME, Tsokos M (June 2001). "Fas-mediated apoptosis in neuroblastoma requires mitochondrial activation and is inhibited by FLICE inhibitor protein and Bcl-2".Cancer Research.61(12): 4864–72.PMID11406564.
  62. ^Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (April 2002)."Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria".The Journal of Biological Chemistry.277(16): 13430–7.doi:10.1074/jbc.M108029200.PMID11832478.
  63. ^Pathan N, Aime-Sempe C, Kitada S, Basu A, Haldar S, Reed JC (2001)."Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1".Neoplasia.3(6): 550–9.doi:10.1038/sj.neo.7900213.PMC1506558.PMID11774038.
  64. ^Pathan N, Aime-Sempe C, Kitada S, Haldar S, Reed JC (2001)."Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1".Neoplasia.3(1): 70–9.doi:10.1038/sj.neo.7900131.PMC1505024.PMID11326318.
  65. ^Inohara N, Ding L, Chen S, Núñez G (April 1997)."harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L)".The EMBO Journal.16(7): 1686–94.doi:10.1093/emboj/16.7.1686.PMC1169772.PMID9130713.
  66. ^Ueno H, Kondo E, Yamamoto-Honda R, Tobe K, Nakamoto T, Sasaki K, Mitani K, Furusaka A, Tanaka T, Tsujimoto Y, Kadowaki T, Hirai H (February 2000)."Association of insulin receptor substrate proteins with Bcl-2 and their effects on its phosphorylation and antiapoptotic function".Molecular Biology of the Cell.11(2): 735–46.doi:10.1091/mbc.11.2.735.PMC14806.PMID10679027.
  67. ^Jin Z, Gao F, Flagg T, Deng X (September 2004)."Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation".The Journal of Biological Chemistry.279(38): 40209–19.doi:10.1074/jbc.M404056200.PMID15210690.
  68. ^Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (May 2000). "Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis".Science.288(5468): 1053–8.Bibcode:2000Sci...288.1053O.doi:10.1126/science.288.5468.1053.PMID10807576.
  69. ^Deng X, Ito T, Carr B, Mumby M, May WS (December 1998)."Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A".The Journal of Biological Chemistry.273(51): 34157–63.doi:10.1074/jbc.273.51.34157.PMID9852076.
  70. ^Alberici A, Moratto D, Benussi L, Gasparini L, Ghidoni R, Gatta LB, Finazzi D, Frisoni GB, Trabucchi M, Growdon JH, Nitsch RM, Binetti G (October 1999)."Presenilin 1 protein directly interacts with Bcl-2".The Journal of Biological Chemistry.274(43): 30764–9.doi:10.1074/jbc.274.43.30764.PMID10521466.
  71. ^Fernandez-Sarabia MJ, Bischoff JR (November 1993). "Bcl-2 associates with the ras-related protein R-ras p23".Nature.366(6452): 274–5.Bibcode:1993Natur.366..274F.doi:10.1038/366274a0.PMID8232588.S2CID4312803.
  72. ^Tagami S, Eguchi Y, Kinoshita M, Takeda M, Tsujimoto Y (November 2000)."A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity".Oncogene.19(50): 5736–46.doi:10.1038/sj.onc.1203948.PMID11126360.
  73. ^Iwahashi H, Eguchi Y, Yasuhara N, Hanafusa T, Matsuzawa Y, Tsujimoto Y (November 1997). "Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy".Nature.390(6658): 413–7.Bibcode:1997Natur.390..413I.doi:10.1038/37144.PMID9389483.S2CID1936633.
  74. ^Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, Brown RH (July 2004)."Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria".Neuron.43(1): 19–30.doi:10.1016/j.neuron.2004.06.021.PMID15233914.S2CID18141051.
  75. ^Naumovski L, Cleary ML (July 1996)."The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M".Molecular and Cellular Biology.16(7): 3884–92.doi:10.1128/MCB.16.7.3884.PMC231385.PMID8668206.

External links[edit]