Jump to content

DNA clamp

From Wikipedia, the free encyclopedia
Top and side views of ahomotrimerof the humanPCNAsliding clamp (rainbow colored,N-terminus= blue,C-terminus= red) with double strandedDNAmodeled through the central pore (magenta).[1]
Cryo-EM structure of the DNA-bound PolD–PCNA processive complex
Structural basis for DNA binding by the PolD–PCNA complex

ADNA clamp,also known as asliding clamp,is aprotein complexthat serves as aprocessivity-promoting factor inDNA replication.As a critical component of theDNA polymerase III holoenzyme,the clamp protein bindsDNA polymeraseand prevents thisenzymefrom dissociating from the templateDNAstrand. The clamp-polymeraseprotein–protein interactionsare stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of therate-limiting stepsin the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically increases the number ofnucleotidesthat the polymerase can add to the growing strand per association event. The presence of the DNA clamp can increase the rate of DNA synthesis up to 1,000-fold compared with a nonprocessive polymerase.[2]

Structure[edit]

The DNA clamp is anα+βprotein that assembles into a multimeric, six-domain ring structure that completely encircles the DNA double helix as the polymerase addsnucleotidesto the growing strand.[3]Each domain is in turn made of two β-α-β-β-β structural repeats.[4]The DNA clamp assembles on the DNA at thereplication forkand "slides" along the DNA with the advancing polymerase, aided by a layer ofwatermolecules in the central pore of the clamp between the DNA and the protein surface. Because of thetoroidalshape of the assembled multimer, the clamp cannot dissociate from the template strand without also dissociating intomonomers.

The DNA clamp fold is found inbacteria,archaea,eukaryotesand someviruses.In bacteria, the sliding clamp is ahomodimercomposed of two identical beta subunits ofDNA polymerase IIIand hence is referred to as the beta clamp. In archaea[5]and eukaryotes, it is a trimer composed of three molecules ofPCNA.TheT4 bacteriophagealso uses a sliding clamp, called gp45 that is a trimer similar in structure to PCNA but lacks sequence homology to either PCNA or the bacterial beta clamp.[3]

Taxon Sliding clamp protein Multimer state Associated polymerase
Bacteria beta subunit of pol III dimer DNA polymerase III
Archaea archaealPCNA trimer PolD
Eukaryote PCNA trimer DNA polymerase delta
Caudovirales IPR004190 trimer Phage polymerase(e.g. T4)
Herpesviridae non-clamp processivity factor monomer Virus-encoded polymerase

Bacterial[edit]

DNA polymerase III subunit beta
Crystallographic structureof thedimericDNA polymerase beta subunit fromE. coli.[6]
Identifiers
OrganismEscherichia coli
SymboldnaN
Entrez948218
PDB1MMI
RefSeq (Prot)NP_418156
UniProtP0A988
Other data
EC number2.7.7.7
ChromosomeMG1655: 3.88 - 3.88 Mb
Search for
StructuresSwiss-model
DomainsInterPro

Thebeta clampis a specific DNA clamp and a subunit of theDNA polymerase IIIholoenzyme found in bacteria. Two beta subunits are assembled around the DNA by the gamma subunit and ATP hydrolysis; this assembly is called thepre-initiation complex.After assembly around the DNA, the beta subunits' affinity for the gamma subunit is replaced by an affinity for the Alpha and epsilon subunits, which together create the complete holoenzyme.[7][8][9]DNA polymerase III is the primary enzyme complex involved inprokaryoticDNA replication.

The gamma complex of DNA polymerase III, composed of γδδ'χψ subunits, catalyzesATPto chaperone two beta subunits to bind to DNA. Once bound to DNA, the beta subunits can freely slide along double stranded DNA. The beta subunits in turn bind the αε polymerase complex. The α subunit possessesDNA polymeraseactivity and the ε subunit is a 3’-5’exonuclease.[9]

The beta chain of bacterial DNA polymerase III is composed of three topologically equivalentdomains(N-terminal,central, andC-terminal). Two beta chain molecules are tightly associated to form a closed ring encircling duplex DNA.

DNA polymerase III, beta chain (whole protein)
Identifiers
SymbolDNA_polIII_beta
InterProIPR001001
SMARTSM00480
SCOP22pol/SCOPe/SUPFAM
Available protein structures:
Pfam
PDB1jqj​,1jql​,1mmi​,1ok7​,1unn​,1vpk​,2pol​,3bep​,3d1e​,3d1f​,3d1g
DNA polymerase III, beta chain,
N-terminal
Identifiers
SymbolDNA_pol3_beta
PfamPF00712
InterProIPR022634
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
DNA polymerase III, beta chain,
central
Identifiers
SymbolDNA_pol3_beta_2
PfamPF02767
InterProIPR022637
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
DNA polymerase III, beta chain,
C-terminal
Identifiers
SymbolDNA_pol3_beta_3
PfamPF02768
InterProIPR022635
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary

As a drug target[edit]

CertainNSAIDs(carprofen, bromfenac, and vedaprofen) exhibit some suppression of bacterial DNA replication by inhibiting bacterial DNA clamp.[10]

Eukaryotic and archaeal[edit]

proliferating cell nuclear antigen
The assembled human DNA clamp, atrimerof the human proteinPCNA.[11]
Identifiers
SymbolPCNA
NCBI gene5111
HGNC8729
OMIM176740
PDB1axc
RefSeqNM_002592
UniProtP12004
Other data
EC number2.7.7.7
LocusChr. 20pter-p12
Search for
StructuresSwiss-model
DomainsInterPro

The sliding clamp in eukaryotes is assembled from a specific subunit ofDNA polymerase deltacalled the proliferating cell nuclear antigen (PCNA). TheN-terminalandC-terminaldomains of PCNA are topologically identical. Three PCNA molecules are tightly associated to form a closed ring encircling duplex DNA.

The sequence of PCNA is well conserved between plants, animals and fungi, indicating a strong selective pressure for structure conservation, and suggesting that this type of DNA replication mechanism is conserved throughout eukaryotes.[12][13]In eukaryotes, a homologous, heterotrimeric "9-1-1 clamp" made up ofRAD9-RAD1-HUS1(911) is responsible for DNA damage checkpoint control.[14]This 9-1-1 clamp mounts onto DNA in the opposite direction.[15]

Archaea,probable evolutionary precursor of eukaryotes, also universally have at least one PCNA gene. This PCNA ring works withPolD,the single eukaryotic-like DNA polymerase in archaea responsible for multiple functions from replication to repair. Some unusual species have two or even three PCNA genes, forming heterotrimers or distinct specialized homotrimers.[16]Archaeons also share with eukaryotes the PIP (PCNA-interacting protein) motif, but a wider variety of such proteins performing different functions are found.[17]

PCNA is also appropriated by some viruses. The giant virus genusChlorovirus,with PBCV-1 as a representative, carries in its genome two PCNA genes (Q84513,O41056) and a eukaryotic-type DNA polymerase.[18]Members ofBaculoviridaealso encode a PCNA homolog (P11038).[19]

Proliferating cell nuclear antigen, N-terminal domain
Identifiers
SymbolPCNA_N
PfamPF00705
InterProIPR000730
PROSITEPDOC00265
SCOP21plq/SCOPe/SUPFAM
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
PDB1axc​C:1–1251ge8​A:3–921isq​A:3–921iz4​A:3–921iz5​A:3–921plq​:1–1251plr​:1–1251rwz​A:1–1141rxm​A:1–1141rxz​A:1–1141u76​C:1–1251u7b​A:1–1251ud9​C:11–1001ul1​A:1–1251vyj​G:1–1251vym​C:1–1251w60​B:1–125
Proliferating cell nuclear antigen, C-terminal domain
Identifiers
SymbolPCNA_C
PfamPF02747
InterProIPR000730
PROSITEPDOC00265
SCOP21plq/SCOPe/SUPFAM
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
PDB1axc​C:127–2541ge8​A:203–2461isq​A:203–2461iz4​A:203–2461iz5​A:203–2461plq​:127–2541plr​:127–2541rwz​A:121–2411rxm​A:121–2411rxz​A:121–2411u76​C:127–2541u7b​A:127–2541ud9​C:200–2431ul1​A:127–2541vyj​G:127–2541vym​C:127–2541w60​B:127–254

Caudoviral[edit]

DNA polymerase accessory protein 45
Identifiers
OrganismEnterobacteria phage T4
Symbolgp45
Entrez1258821
PDB1CZD
RefSeq (Prot)NP_049666
UniProtP04525
Other data
EC number2.7.7.7
Chromosome1: 0.03 - 0.03 Mb
Search for
StructuresSwiss-model
DomainsInterPro

The viral gp45 sliding clamp subunit protein contains two domains. Each domain consists of two Alpha helices and two beta sheets – the fold is duplicated and has internal pseudo two-fold symmetry.[21]Three gp45 molecules are tightly associated to form a closed ring encircling duplex DNA.

Gp45 sliding clamp, N-terminal
Identifiers
SymbolDNA_pol_proc_fac
PfamPF02916
InterProIPR004190
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
PDB1b771b8h1czd
Gp45 sliding clamp, C-terminal
Identifiers
SymbolGp45_slide_clamp_C
PfamPF09116
InterProIPR015200
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
PDB1b771b8h1czd

Herpesviral[edit]

Some members ofHerpesviridaeencode a protein that has a DNA clamp fold but does not associate into a ring clamp. The two-domain protein does, however, associate with the viral DNA polymerase and also acts to increase processivity.[22]As it does not form a ring, it does not need a clamp loader to be attached to DNA.[23]

DNA polymerase processivity factor (HSVUL42, Alphaherpesvirus)
Identifiers
SymbolHerpes_UL42
PfamPF02282
InterProIPR003202
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
Herpesvirus polymerase accessory protein (Betaherpesvirus)
Identifiers
SymbolHerpes_PAP
PfamPF03325
InterProIPR004997
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary
Herpes DNA replication accessory factor (Gammaherpesvirus)
Identifiers
SymbolHerpes_DNAp_acc
PfamPF04929
InterProIPR007013
Available protein structures:
Pfam structures/ECOD
PDBRCSB PDB;PDBe;PDBj
PDBsumstructure summary

Assembly[edit]

Sliding clamps are loaded onto their associated DNA template strands by specialized proteins known as "sliding clamp loaders",which also disassemble the clamps after replication has completed. The binding sites for these initiator proteins overlap with the binding sites for the DNA polymerase, so the clamp cannot simultaneously associate with a clamp loader and with a polymerase. Thus the clamp will not be actively disassembled while the polymerase remains bound. DNA clamps also associate with other factors involved in DNA and genome homeostasis, such asnucleosomeassembly factors,Okazaki fragmentligases, andDNA repairproteins. All of these proteins also share a binding site on the DNA clamp that overlaps with the clamp loader site, ensuring that the clamp will not be removed while any enzyme is still working on the DNA. The activity of the clamp loader requiresATP hydrolysisto "close" the clamp around the DNA.

References[edit]

  1. ^PDB:1W60​;Kontopidis G, Wu SY, Zheleva DI, Taylor P, McInnes C, Lane DP, et al. (February 2005)."Structural and biochemical studies of human proliferating cell nuclear antigen complexes provide a rationale for cyclin association and inhibitor design".Proceedings of the National Academy of Sciences of the United States of America.102(6): 1871–1876.doi:10.1073/pnas.0406540102.PMC548533.PMID15681588.
  2. ^Mizrahi V, Henrie RN, Marlier JF, Johnson KA, Benkovic SJ (July 1985). "Rate-limiting steps in the DNA polymerase I reaction pathway".Biochemistry.24(15): 4010–4018.doi:10.1021/bi00336a031.PMID3902078.
  3. ^abBruck I, O'Donnell M (2001)."The ring-type polymerase sliding clamp family".Genome Biology.2(1): REVIEWS3001.doi:10.1186/gb-2001-2-1-reviews3001.PMC150441.PMID11178284.
  4. ^Neuwald AF, Poleksic A (September 2000)."PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of beta-propellers in UV-damaged DNA-binding protein".Nucleic Acids Research.28(18): 3570–3580.doi:10.1093/nar/28.18.3570.PMC110734.PMID10982878.
  5. ^Matsumiya S, Ishino Y, Morikawa K (January 2001)."Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus".Protein Science.10(1): 17–23.doi:10.1110/ps.36401.PMC2249843.PMID11266590.
  6. ^PDB:1MMI​;Oakley AJ, Prosselkov P, Wijffels G, Beck JL, Wilce MC, Dixon NE (July 2003)."Flexibility revealed by the 1.85 A crystal structure of the beta sliding-clamp subunit of Escherichia coli DNA polymerase III"(PDF).Acta Crystallographica. Section D, Biological Crystallography.59(Pt 7): 1192–1199.Bibcode:2003AcCrD..59.1192O.doi:10.1107/S0907444903009958.PMID12832762.
  7. ^Lewin B (1997).Genes VI.Oxford [Oxfordshire]: Oxford University Press. pp. 484–7.ISBN978-0-19-857779-9.
  8. ^Lehninger AL (1975).Biochemistry: The Molecular Basis of Cell Structure and Function.New York: Worth Publishers. pp.894.ISBN978-0-87901-047-8.
  9. ^abStukenberg PT, Studwell-Vaughan PS, O'Donnell M (June 1991)."Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme".The Journal of Biological Chemistry.266(17): 11328–11334.doi:10.1016/S0021-9258(18)99166-0.PMID2040637.
  10. ^Yin Z, Wang Y, Whittell LR, Jergic S, Liu M, Harry E, et al. (April 2014)."DNA replication is the target for the antibacterial effects of nonsteroidal anti-inflammatory drugs".Chemistry & Biology.21(4): 481–487.doi:10.1016/j.chembiol.2014.02.009.PMID24631121.
  11. ^PDB:1AXC​;Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J (October 1996)."Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA".Cell.87(2): 297–306.doi:10.1016/S0092-8674(00)81347-1.PMID8861913.S2CID17461501.
  12. ^Suzuka I, Hata S, Matsuoka M, Kosugi S, Hashimoto J (January 1991)."Highly conserved structure of proliferating cell nuclear antigen (DNA polymerase delta auxiliary protein) gene in plants".European Journal of Biochemistry.195(2): 571–575.doi:10.1111/j.1432-1033.1991.tb15739.x.PMID1671766.
  13. ^Marshall AC, Kroker AJ, Murray LA, Gronthos K, Rajapaksha H, Wegener KL, Bruning JB (March 2017)."Structure of the sliding clamp from the fungal pathogen Aspergillus fumigatus (AfumPCNA) and interactions with Human p21".The FEBS Journal.284(6): 985–1002.doi:10.1111/febs.14035.PMID28165677.
  14. ^Majka J, Burgers PM (2004). "The PCNA-RFC families of DNA clamps and clamp loaders".Progress in Nucleic Acid Research and Molecular Biology.78:227–260.doi:10.1016/S0079-6603(04)78006-X.ISBN9780125400787.PMID15210332.
  15. ^Zheng F, Georgescu RE, Yao NY, O'Donnell ME, Li H (April 2022)."DNA is loaded through the 9-1-1 DNA checkpoint clamp in the opposite direction of the PCNA clamp".Nature Structural & Molecular Biology.29(4): 376–385.doi:10.1038/s41594-022-00742-6.PMC9010301.PMID35314830.
  16. ^Pan M, Kelman LM, Kelman Z (January 2011). "The archaeal PCNA proteins".Biochemical Society Transactions.39(1): 20–24.doi:10.1042/bst0390020.PMID21265741.
  17. ^MacNeill SA (August 2016)."PCNA-binding proteins in the archaea: novel functionality beyond the conserved core".Current Genetics.62(3): 527–532.doi:10.1007/s00294-016-0577-3.PMC4929162.PMID26886233.
  18. ^Van Etten JL, Agarkova IV, Dunigan DD (December 2019)."Chloroviruses".Viruses.12(1): 20.doi:10.3390/v12010020.PMC7019647.PMID31878033.
  19. ^Fu Y, Wang R, Liang A (June 2018). "Function analysis of Ac-PCNA and Sf-PCNA during the Autographa californica multiple nucleopolyhedrovirus infection process".Molecular and Cellular Biochemistry.443(1–2): 57–68.doi:10.1007/s11010-017-3210-y.PMID29075988.S2CID9507736.
  20. ^PDB:1CZD​;Moarefi I, Jeruzalmi D, Turner J, O'Donnell M, Kuriyan J (March 2000). "Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage".Journal of Molecular Biology.296(5): 1215–1223.doi:10.1006/jmbi.1999.3511.PMID10698628.
  21. ^Shamoo Y, Steitz TA (October 1999)."Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex".Cell.99(2): 155–166.doi:10.1016/S0092-8674(00)81647-5.PMID10535734.S2CID18103622.
  22. ^Zuccola HJ, Filman DJ, Coen DM, Hogle JM (February 2000)."The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase".Molecular Cell.5(2): 267–278.doi:10.1016/S1097-2765(00)80422-0.PMID10882068.
  23. ^Neuwald AF, Poleksic A (September 2000)."PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of beta-propellers in UV-damaged DNA-binding protein".Nucleic Acids Research.28(18): 3570–3580.doi:10.1093/nar/28.18.3570.PMC110734.PMID10982878.

Further reading[edit]

External links[edit]