Jump to content

Egyptian fraction

From Wikipedia, the free encyclopedia
TheRhind Mathematical Papyrus

AnEgyptian fractionis a finite sum of distinctunit fractions,such as That is, eachfractionin the expression has anumeratorequal to 1 and adenominatorthat is a positiveinteger,and all the denominators differ from each other. The value of an expression of this type is apositiverational number;for instance the Egyptian fraction above sums to.Every positive rational number can be represented by an Egyptian fraction. Sums of this type, and similar sums also includingandassummands,were used as a serious notation for rational numbers by the ancient Egyptians, and continued to be used by other civilizations into medieval times. In modern mathematical notation, Egyptian fractions have been superseded byvulgar fractionsanddecimalnotation. However, Egyptian fractions continue to be an object of study in modernnumber theoryandrecreational mathematics,as well as in modern historical studies ofancient mathematics.

Applications

[edit]

Beyond their historical use, Egyptian fractions have some practical advantages over other representations of fractional numbers. For instance, Egyptian fractions can help in dividing food or other objects into equal shares.[1]For example, if one wants to divide 5 pizzas equally among 8 diners, the Egyptian fraction means that each diner gets half a pizza plus another eighth of a pizza, for example by splitting 4 pizzas into 8 halves, and the remaining pizza into 8 eighths. Exercises in performing this sort offair divisionof food are a standard classroom example in teaching students to work with unit fractions.[2]

Egyptian fractions can provide a solution torope-burning puzzles,in which a given duration is to be measured by igniting non-uniform ropes which burn out after a unit time. Any rational fraction of a unit of time can be measured by expanding the fraction into a sum of unit fractions and then, for each unit fraction,burning a rope so that it always hassimultaneously lit points where it is burning. For this application, it is not necessary for the unit fractions to be distinct from each other. However, this solution may need an infinite number of re-lighting steps.[3]

Early history

[edit]

Egyptian fraction notation was developed in theMiddle Kingdom of Egypt.Five early texts in which Egyptian fractions appear were theEgyptian Mathematical Leather Roll,theMoscow Mathematical Papyrus,theReisner Papyrus,theKahun Papyrusand theAkhmim Wooden Tablet.A later text, theRhind Mathematical Papyrus,introduced improved ways of writing Egyptian fractions. The Rhind papyrus was written byAhmesand dates from theSecond Intermediate Period;it includes atable of Egyptian fraction expansions for rational numbers,as well as 84word problems.Solutions to each problem were written out in scribal shorthand, with the final answers of all 84 problems being expressed in Egyptian fraction notation. Tables of expansions forsimilar to the one on the Rhind papyrus also appear on some of the other texts. However, as theKahun Papyrusshows,vulgar fractionswere also used by scribes within their calculations.

Notation

[edit]

To write the unit fractions used in their Egyptian fraction notation, in hieroglyph script, the Egyptians placed thehieroglyph:

D21

(er,"[one] among" or possiblyre,mouth) above a number to represent thereciprocalof that number. Similarly in hieratic script they drew a line over the letter representing the number. For example:

D21
Z1Z1Z1
D21
V20

The Egyptians had special symbols for,,andthat were used to reduce the size of numbers greater thanwhen such numbers were converted to an Egyptian fraction series. The remaining number after subtracting one of these special fractions was written as a sum of distinct unit fractions according to the usual Egyptian fraction notation.

Aa13
D22
D23

The Egyptians also used an alternative notation modified from the Old Kingdom to denote a special set of fractions of the form(for) and sums of these numbers, which are necessarilydyadic rationalnumbers. These have been called "Horus-Eye fractions" after a theory (now discredited)[4]that they were based on the parts of theEye of Horussymbol. They were used in the Middle Kingdom in conjunction with the later notation for Egyptian fractions to subdivide ahekat,the primary ancient Egyptian volume measure for grain, bread, and other small quantities of volume, as described in theAkhmim Wooden Tablet.If any remainder was left after expressing a quantity in Eye of Horus fractions of a hekat, the remainder was written using the usual Egyptian fraction notation as multiples of aro,a unit equal toof a hekat.

Calculation methods

[edit]

Modern historians of mathematics have studied the Rhind papyrus and other ancient sources in an attempt to discover the methods the Egyptians used in calculating with Egyptian fractions. In particular, study in this area has concentrated on understanding the tables of expansions for numbers of the formin the Rhind papyrus. Although these expansions can generally be described as algebraic identities, the methods used by the Egyptians may not correspond directly to these identities. Additionally, the expansions in the table do not match any single identity; rather, different identities match the expansions forprimeand forcompositedenominators, and more than one identity fits the numbers of each type:

  • For small odd prime denominators,the expansionwas used.
  • For larger prime denominators, an expansion of the formwas used, whereis a number with many divisors (such as apractical number) betweenand.The remaining termwas expanded by representing the numberas a sum of divisors ofand forming a fractionfor each such divisorin this sum.[5]As an example, Ahmes' expansionfits this pattern withand,asand.There may be many different expansions of this type for a given;however, as K. S. Brown observed, the expansion chosen by the Egyptians was often the one that caused the largest denominator to be as small as possible, among all expansions fitting this pattern.
  • For some composite denominators, factored as,the expansion forhas the form of an expansion forwith each denominator multiplied by.This method appears to have been used for many of the composite numbers in the Rhind papyrus,[6]but there are exceptions, notably,,and.[7]
  • One can also expandFor instance, Ahmes expands.Later scribes used a more general form of this expansion,which works whenis a multiple of.[8]
  • The final (prime) expansion in the Rhind papyrus,,does not fit any of these forms, but instead uses an expansionthat may be applied regardless of the value of.That is,.A related expansion was also used in the Egyptian Mathematical Leather Roll for several cases.

Later usage

[edit]

Egyptian fraction notation continued to be used in Greek times and into the Middle Ages,[9]despite complaints as early asPtolemy'sAlmagestabout the clumsiness of the notation compared to alternatives such as theBabylonianbase-60 notation.Related problems of decomposition into unit fractions were also studied in 9th-century India by Jain mathematicianMahāvīra.[10]An important text of medieval European mathematics, theLiber Abaci(1202) ofLeonardo of Pisa(more commonly known as Fibonacci), provides some insight into the uses of Egyptian fractions in the Middle Ages, and introduces topics that continue to be important in modern mathematical study of these series.

The primary subject of theLiber Abaciis calculations involving decimal and vulgar fraction notation, which eventually replaced Egyptian fractions. Fibonacci himself used a complex notation for fractions involving a combination of amixed radixnotation with sums of fractions. Many of the calculations throughout Fibonacci's book involve numbers represented as Egyptian fractions, and one section of this book[11]provides a list of methods for conversion of vulgar fractions to Egyptian fractions. If the number is not already a unit fraction, the first method in this list is to attempt to split the numerator into a sum of divisors of the denominator; this is possible whenever the denominator is apractical number,andLiber Abaciincludes tables of expansions of this type for the practical numbers 6, 8, 12, 20, 24, 60, and 100.

The next several methods involve algebraic identities such as For instance, Fibonacci represents the fraction8/11by splitting the numerator into a sum of two numbers, each of which divides one plus the denominator:8/11=6/11+2/11.Fibonacci applies the algebraic identity above to each these two parts, producing the expansion8/11=1/2+1/22+1/6+1/66.Fibonacci describes similar methods for denominators that are two or three less than a number with many factors.

In the rare case that these other methods all fail, Fibonacci suggests a"greedy" algorithmfor computing Egyptian fractions, in which one repeatedly chooses the unit fraction with the smallest denominator that is no larger than the remaining fraction to be expanded: that is, in more modern notation, we replace a fractionx/yby the expansion where⌈ ⌉represents theceiling function;since(−y) modx<x,this method yields a finite expansion.

Fibonacci suggests switching to another method after the first such expansion, but he also gives examples in which this greedy expansion was iterated until a complete Egyptian fraction expansion was constructed:4/13=1/4+1/18+1/468and17/29=1/2+1/12+1/348.

Compared to ancient Egyptian expansions or to more modern methods, this method may produce expansions that are quite long, with large denominators, and Fibonacci himself noted the awkwardness of the expansions produced by this method. For instance, the greedy method expands while other methods lead to the shorter expansion

Sylvester's sequence2, 3, 7, 43, 1807,... can be viewed as generated by an infinite greedy expansion of this type for the number 1, where at each step we choose the denominatory/x⌋ + 1instead ofy/x,and sometimes Fibonacci's greedy algorithm is attributed toJames Joseph Sylvester.

After his description of the greedy algorithm, Fibonacci suggests yet another method, expanding a fractiona/bby searching for a numberchaving many divisors, withb/2<c<b,replacinga/bbyac/bc,and expandingacas a sum of divisors ofbc,similar to the method proposed by Hultsch and Bruins to explain some of the expansions in the Rhind papyrus.

Modern number theory

[edit]

Although Egyptian fractions are no longer used in most practical applications of mathematics, modern number theorists have continued to study many different problems related to them. These include problems of bounding the length or maximum denominator in Egyptian fraction representations, finding expansions of certain special forms or in which the denominators are all of some special type, the termination of various methods for Egyptian fraction expansion, and showing that expansions exist for any sufficiently dense set of sufficientlysmooth numbers.

  • One of the earliest publications ofPaul Erdősproved that it is not possible for aharmonic progressionto form an Egyptian fraction representation of aninteger.The reason is that, necessarily, at least one denominator of the progression will be divisible by aprime numberthat does not divide any other denominator.[12]The latest publication of Erdős, nearly 20 years after his death, proves that every integer has a representation in which all denominators are products of three primes.[13]
  • TheErdős–Graham conjectureincombinatorial number theorystates that, if the integers greater than 1 are partitioned into finitely many subsets, then one of the subsets has a finite subset of itself whose reciprocals sum to one. That is, for everyr> 0,and everyr-coloring of the integers greater than one, there is a finite monochromatic subsetSof these integers such thatThe conjecture was proven in 2003 byErnest S. Croot III.
  • Znám's problemandprimary pseudoperfect numbersare closely related to the existence of Egyptian fractions of the formFor instance, the primary pseudoperfect number 1806 is the product of the prime numbers 2, 3, 7, and 43, and gives rise to the Egyptian fraction1 =1/2+1/3+1/7+1/43+1/1806.
  • Egyptian fractions are normally defined as requiring all denominators to be distinct, but this requirement can be relaxed to allow repeated denominators. However, this relaxed form of Egyptian fractions does not allow for any number to be represented using fewer fractions, as any expansion with repeated fractions can be converted to an Egyptian fraction of equal or smaller length by repeated application of the replacementifkis odd, or simply by replacing1/k+1/kby2/kifkis even. This result was first proven byTakenouchi (1921).
  • Graham and Jewett[14]proved that it is similarly possible to convert expansions with repeated denominators to (longer) Egyptian fractions, via the replacementThis method can lead to long expansions with large denominators, such asBotts (1967)had originally used this replacement technique to show that any rational number has Egyptian fraction representations with arbitrarily large minimum denominators.
  • Any fractionx/yhas an Egyptian fraction representation in which the maximum denominator is bounded by[15]and a representation with at mostterms.[16]The number of terms must sometimes be at least proportional tolog logy;for instance this is true for the fractions in the sequence1/2,2/3,6/7,42/43,1806/1807,... whose denominators formSylvester's sequence.It has been conjectured thatO(log logy)terms are always enough.[17]It is also possible to find representations in which both the maximum denominator and the number of terms are small.[18]
  • Graham (1964)characterized the numbers that can be represented by Egyptian fractions in which all denominators arenth powers. In particular, a rational numberqcan be represented as an Egyptian fraction with square denominators if and only ifqlies in one of the two half-open intervals
  • Martin (1999)showed that any rational number has very dense expansions, using a constant fraction of the denominators up toNfor any sufficiently largeN.
  • Engel expansion,sometimes called anEgyptian product,is a form of Egyptian fraction expansion in which each denominator is a multiple of the previous one:In addition, the sequence of multipliersaiis required to be nondecreasing. Every rational number has a finite Engel expansion, whileirrational numbershave an infinite Engel expansion.
  • Anshel & Goldfeld (1991)study numbers that have multiple distinct Egyptian fraction representations with the same number of terms and the same product of denominators; for instance, one of the examples they supply isUnlike the ancient Egyptians, they allow denominators to be repeated in these expansions. They apply their results for this problem to the characterization offree productsofAbelian groupsby a small number of numerical parameters: the rank of thecommutator subgroup,the number of terms in the free product, and the product of the orders of the factors.
  • The number of differentn-term Egyptian fraction representations of the number one is bounded above and below bydouble exponential functionsofn.[19]

Open problems

[edit]

Some notable problems remain unsolved with regard to Egyptian fractions, despite considerable effort by mathematicians.

  • TheErdős–Straus conjecture[17]concerns the length of the shortest expansion for a fraction of the form4/n.Does an expansionexist for everyn?It is known to be true for alln< 1017,and for all but a vanishingly small fraction of possible values ofn,but the general truth of the conjecture remains unknown.
  • It is unknown whether anodd greedy expansionexists for every fraction with an odd denominator. If Fibonacci's greedy method is modified so that it always chooses the smallest possibleodddenominator, under what conditions does this modified algorithm produce a finite expansion? An obvious necessary condition is that the starting fractionx/yhave an odd denominatory,and it is conjectured but not known that this is also a sufficient condition. It is known[20]that everyx/ywith oddyhas an expansion into distinct odd unit fractions, constructed using a different method than the greedy algorithm.
  • It is possible to usebrute-force searchalgorithms to find the Egyptian fraction representation of a given number with the fewest possible terms[21]or minimizing the largest denominator; however, such algorithms can be quite inefficient. The existence ofpolynomial timealgorithms for these problems, or more generally thecomputational complexityof such problems, remains unknown.

Guy (2004)describes these problems in more detail and lists numerous additional open problems.

See also

[edit]

Notes

[edit]

References

[edit]
[edit]