Jump to content

Explorer 9

From Wikipedia, the free encyclopedia

Explorer 9
Explorer 9 before launch
NamesS-56A
Explorer IX
NASA S-56A
Mission typeAir densityresearch
OperatorNASA
Harvard designation1961 Delta 1
COSPAR ID1961-004AEdit this at Wikidata
SATCATno.00081
Mission duration3 years (achieved)
Spacecraft properties
SpacecraftExplorer IX
Spacecraft typeAir Density Explorer
BusS-56
ManufacturerLangley Research Center
Launch mass7 kg (15 lb)
Dimensions3.66 m (12.0 ft) diameter
Powersolar cellsand
rechargeable batteries
Start of mission
Launch date16 February 1961,
13:05:00GMT
RocketScout X-1(ST-4)
Launch siteWallops Flight Facility,LA-3
ContractorVought
Entered service16 February 1961
End of mission
Decay date9 April 1964
Orbital parameters
Reference systemGeocentric orbit[1]
RegimeMedium Earth orbit
Perigee altitude545 km (339 mi)
Apogee altitude2,225 km (1,383 mi)
Inclination38.91°
Period118.6 minutes
Instruments
Satellite Drag Atmospheric Density
Explorer Program

Explorer 9,known asS-56Abefore launch, was aNASAsatellite which was launched in February 1961 to study the density and composition of the upperthermosphereand lowerexosphere.[2]It was a reflight of the failedExplorer S-56mission, and consisted of a 7 kg (15 lb), 3.66 m (12.0 ft)balloonwhich was deployed into amedium Earth orbit.[3]The mission was conducted byNASA'sLangley Research Center.

Spacecraft[edit]

The spacecraft consisted of alternating layers ofaluminium foilandMylarpolyesterfilm. Uniformly distributed over the aluminium surface were 5.1 cm (2.0 in)-diameter dots of white paint for thermal control. The sphere was packed in a tube 21.6 cm (8.5 in) in diameter and 48.3 cm (19.0 in) long and mounted in the nose of the fourth stage of itsScout X-1launch vehicle.[4]

Experiment[edit]

Satellite Drag Atmospheric Density[edit]

Because of its symmetrical shape, Explorer 9 was selected for use in determining upper atmospheric densities as a function of altitude, latitude, season, and solar activity. Density values near perigee were deduced from sequential observations of the spacecraft position, using optical (Baker-Nunn camera network) and radar tracking techniques. A good discussion of the general techniques used to deduce density values from satellite drag data can be found in L. G. Jacchia and J. Slowey, "Accurate drag determination for eight artificial satellites of atmospheric densities and temperatures",Smithsonian Astrophysical Observatoryspecial report n. 100,Cambridge, Massachusetts,July 1962.[5]This experiment resulted in the successful determination of reasonable density values until the satellite reentered the Earth's atmosphere on 9 April 1964.[6]

Launch[edit]

Launch of Explorer 9 on a Scout X-1 (ST-4) on 16 February 1961.

Explorer 9 was launched fromLaunch Area 3at theWallops Flight Facility(WFF), atop aScout X-1launch vehicle with the serial number ST-4. It was the first spacecraft launched from Wallops Island to achieve orbit, with one previous attempt having failed. The launch occurred at 13:05:00 GMT on 16 February 1961, and resulted in Explorer 9 being deployed into an orbit with anapogeeof 2,225 km (1,383 mi), aperigeeof 545 km (339 mi), 38.91° ofinclinationand aperiodof 118.6 minutes.[7]It was assigned theHarvard designation1961 Delta 1.[8]

Upon separation of the fourth stage, the sphere was inflated by anitrogengas bottle, and a separation spring ejected it out into its own orbit. The two hemispheres of aluminium foil were separated with a gap of Mylar at the spacecraft's equator and served as the antenna. A 136 MHz, 15 mWbeaconwas carried for tracking purposes, but the beacon failed on the first orbit and the SAOBaker-Nunn cameranetwork had to be relied upon for tracking. Power was supplied bysolar cellsandrechargeable batteries.[1]

The second of six identicalair densityresearch satellites to be launched, Explorer 9 was the first to successfully reach orbit. It was still operational when the next satellite in the series,Explorer 19,was launched, allowing simultaneous readings to be taken and compared.[4]

Mission results[edit]

Careful and continuous photographic observation of the satellite allowed scientists to conduct an unprecedented survey of the Earth'sexosphere.The satellite first confirmed the daily bulge in the upper atmospherecaused by the Sun's heating the air during the day and verified the model of exospheric temperature developed according to other satellite data.[9]It was later discovered that the temperature of the exosphere increased after geomagnetic disturbances in theionosphere,peaking around five hours after each event.[10]With three years of data, scientists were able to discern a seasonal variation to theexosphere's density, with an increase of 25% observed in winter over summer at a referencelatitudeof 39°. The delay in the temperature increase resulting from magnetic disturbances was further refined to 5.2 ± 0.4 hours.[11]

Explorer 9 was the first spacecraft placed in orbit by an all-solid launch vehicle and the first spacecraft successfully launched into orbit from Wallops Island. The spacecraft reentered the Earth's atmosphere on 9 April 1964.[1]

Legacy[edit]

A replica of the spacecraft, possibly a flight backup, is currently located in theSmithsonian Institution'sNational Air and Space Museum,although it is not on display.[12]

See also[edit]

References[edit]

  1. ^abc"Display: Explorer-9 1961-004A".NASA. 28 October 2021.Retrieved3 November2021.Public DomainThis article incorporates text from this source, which is in thepublic domain.
  2. ^Smith, Woody."Explorer Spacecraft Series".NASA.Retrieved17 June2010.Public DomainThis article incorporates text from this source, which is in thepublic domain.
  3. ^Wade, Mark."S-56".Encyclopedia Astronautica. Archived fromthe originalon 28 October 2002.Retrieved17 June2010.
  4. ^abKrebs, Gunter (8 April 2020)."AD A, B, C / (S-56) / Explorer S-56, 9, 19, 24, 39, 57".Gunter's Space Page.Retrieved7 November2021.
  5. ^Jacchia, Luigi G.; Slowey, Jack (1963)."Accurate drag determinations for eight artificial satellites: atmospheric densities and temperatures".Smithsonian Contributions to Astrophysics.8(1): 1–99.doi:10.5479/si.00810231.8-1.1.hdl:10088/6623.ISSN0081-0231.
  6. ^"Experiment: Satellite Drag Atmospheric Density".NASA. 28 October 2021.Retrieved3 November2021.Public DomainThis article incorporates text from this source, which is in thepublic domain.
  7. ^McDowell, Jonathan."Satellite Catalog".Jonathan's Space Report.Retrieved17 June2010.
  8. ^McDowell, Jonathan (21 July 2021)."Launch Log".Jonathan's Space Report.Retrieved3 November2021.
  9. ^Jacchia, L. G.; Slowey, J. (1962)."Preliminary Analysis of the Atmospheric Drag of the Twelve-Foot Balloon Satellite (1961 δ1)".Sao Special Report.84.Bibcode:1962SAOSR..84.....J.Retrieved21 December2018.
  10. ^"Analysis of the Atmospheric Drag of the Explorer IX satellite from Precisely Reduced Photographic Observations".Retrieved21 December2018.
  11. ^Roemer, M. (1966)."Atmospheric Densities and Temperatures from Precisely Reduced Observations of the Explorer IX Satellite".Sao Special Report.199.Bibcode:1966SAOSR.199.....R.Retrieved21 December2018.
  12. ^"Satellite, Explorer 9, Balloon Replica".National Air and Space Museum. Archived fromthe originalon 22 December 2018.Retrieved21 December2018.