Jump to content

FARS2

From Wikipedia, the free encyclopedia
FARS2
Available structures
PDBOrtholog search:PDBeRCSB
Identifiers
AliasesFARS2,COXPD14, FARS1, HSPC320, PheRS, dJ520B18.2, phenylalanyl-tRNA synthetase 2, mitochondrial, SPG77, mtPheRS
External IDsOMIM:611592;MGI:1917205;HomoloGene:4788;GeneCards:FARS2;OMA:FARS2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006567
NM_001318872

NM_001039189
NM_024274

RefSeq (protein)

NP_001034278
NP_077236

Location (UCSC)Chr 6: 5.26 – 5.83 MbChr 13: 36.12 – 36.73 Mb
PubMedsearch[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Phenylalanyl-tRNA synthetase, mitochondrial (FARS2)is anenzymethat in humans is encoded by theFARS2gene.[5]Thisproteinencoded byFARS2localizes to themitochondrionand plays a role in mitochondrialprotein translation.Mutationsin this gene have been associated with combined oxidative phosphorylation deficiency 14, also known as Alpers encephalopathy, as well asspastic paraplegia77 and infantile-onsetepilepsyandcytochrome c oxidasedeficiency.[6][7]

Structure

[edit]

FARS2is located on thep armofchromosome 6in position 25.1 and has 15exons.[6]This gene encodes a member of theclass-II aminoacyl-tRNA synthetasefamily.[8][9]FARS2 is a phenylalanine-tRNAsynthetase(PheRS) localized to themitochondrionwhich consists of a singlepolypeptide chain,unlike the ( Alpha -beta)2 structure of theprokaryoticandeukaryoticcytoplasmicforms of PheRS. Structure analysis andcatalyticproperties indicate mitochondrial PheRSs may constitute a class of PheRS distinct from the enzymes found in prokaryotes and in the eukaryotic cytoplasm.[6]

Function

[edit]

Aminoacyl-tRNA synthetasesare a class ofenzymesthat chargetRNAswith their cognateamino acids.[6]FARS2 charges tRNA(Phe) withphenylalanineand catalyzes direct attachment of m-Tyr (an oxidized version of Phe) to tRNA(Phe). This makes it important for mitochondrialtranslationand for delivery of the misacylated tRNA to theribosomeand incorporation ofROS-damaged amino acid into proteins.[8][9][10][11]Alternative splicingresults in multiple transcript variants.[6]

Catalytic activity

[edit]

ATP+ L-phenylalanine+tRNA(Phe) =AMP+diphosphate+ L-phenylalanyl-tRNA(Phe)[8][9][10][11]

Clinical significance

[edit]

Mutations inFARS2have been associated to combined oxidative phosphorylation deficiency 14,spastic paraplegia77, and infantile-onsetepilepsyandcytochrome c oxidasedeficiency. Both combined oxidative phosphorylation deficiency 14 and spastic paraplegia 77 areautosomal recessivein nature and have been linked to several pathogenic variants including Y144C,[12]I329T, D391V,[11]and D142Y.[13]Combined oxidative phosphorylation deficiency 14 is characterized by neonatal onset ofglobal developmental delay,refractoryseizures,lactic acidosis,and deficiencies of multiple mitochondrial respiratory enzymes. Spastic paraplegia, meanwhile, is aneurodegenerative disordercharacterized by a slow, gradual, progressive weakness andspasticityof the lower limbs, with patients often exhibiting difficulty with balance, weakness and stiffness in the legs,muscle spasms,and dragging the toes when walking.[8][9]One case of infantile-onset epilepsy and cytochrome c oxidase deficiency resulting from aFARS2Asp325Tyrmissense mutationhas also been reported. Early-onset epilepsy,neurological deficits,andcomplex IVdeficiency are the main characteristics of the disease stemming from this mutation.[7]

Interactions

[edit]

FARS2 has been shown to have 193 binaryprotein-protein interactionsincluding 12 co-complex interactions. FARS2 appears to interact withRCBTB2,KRTAP10-9,CALCOCO2,KRT40,MID2,APPL1,IKZF3,KRT13,TADA2A,STX11,TRIM27,KRTAP10-5, KRTAP10-7,TFCP2,MKRN3,KRT31,HMBOX1,AGTRAP,ADAMTSL4,NOTCH2NL,CMTM5, TRIM54, FSD2, CYSRT1, HIGD1C, homez,SPRY1,ZNF500,KRT34,YIF1A,BAG4,TPM2,SYP, KRTAP10-8, KRTAP1-1,AP1B1,TRAF2,GRB10,MESD,TRIP6,CCDC152, BEX5,FHL5,MORN3, DGAT2L6, ZNF438, KCTD17,ZNF655,BANP,SPERT,NFKBID,ZNF526,PCSK5,DVL3,AJUBA, PPP1R16B,MDFI,DPH2, CDCA4, KRTAP3-3,BACH2,KCNF1,MAN1C1, RIMBP3,ZRANB1,ISY1,FKBP7,and E7.[14]

References

[edit]
  1. ^abcGRCh38: Ensembl release 89: ENSG00000145982Ensembl,May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000021420Ensembl,May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^Bullard JM, Cai YC, Demeler B, Spremulli LL (May 1999). "Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase".Journal of Molecular Biology.288(4): 567–77.doi:10.1006/jmbi.1999.2708.PMID10329163.
  6. ^abcde"Entrez Gene: FARS2 phenylalanyl-tRNA synthetase 2, mitochondrial".Public DomainThis article incorporates text from this source, which is in thepublic domain.
  7. ^abAlmalki A, Alston CL, Parker A, Simonic I, Mehta SG, He L, Reza M, Oliveira JM, Lightowlers RN, McFarland R, Taylor RW, Chrzanowska-Lightowlers ZM (January 2014)."Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency".Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.1842(1): 56–64.doi:10.1016/j.bbadis.2013.10.008.PMC3898479.PMID24161539.
  8. ^abcd"FARS2 - Phenylalanine--tRNA ligase, mitochondrial precursor - Homo sapiens (Human) - FARS2 gene & protein".uniprot.org.Retrieved2018-09-05.This article incorporates text available under theCC BY 4.0license.
  9. ^abcd"UniProt: the universal protein knowledgebase".Nucleic Acids Research.45(D1): D158–D169. January 2017.doi:10.1093/nar/gkw1099.PMC5210571.PMID27899622.
  10. ^abKlipcan L, Moor N, Kessler N, Safro MG (July 2009)."Eukaryotic cytosolic and mitochondrial phenylalanyl-tRNA synthetases catalyze the charging of tRNA with the meta-tyrosine".Proceedings of the National Academy of Sciences of the United States of America.106(27): 11045–8.Bibcode:2009PNAS..10611045K.doi:10.1073/pnas.0905212106.PMC2700156.PMID19549855.
  11. ^abcElo JM, Yadavalli SS, Euro L, Isohanni P, Götz A, Carroll CJ, Valanne L, Alkuraya FS, Uusimaa J, Paetau A, Caruso EM, Pihko H, Ibba M, Tyynismaa H, Suomalainen A (October 2012)."Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy".Human Molecular Genetics.21(20): 4521–9.doi:10.1093/hmg/dds294.PMID22833457.
  12. ^Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS (April 2012). "Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes".Journal of Medical Genetics.49(4): 234–41.doi:10.1136/jmedgenet-2012-100836.PMID22499341.S2CID5856138.
  13. ^Yang Y, Liu W, Fang Z, Shi J, Che F, He C, Yao L, Wang E, Wu Y (February 2016)."A Newly Identified Missense Mutation in FARS2 Causes Autosomal-Recessive Spastic Paraplegia".Human Mutation.37(2): 165–9.doi:10.1002/humu.22930.PMID26553276.S2CID46241711.
  14. ^"193 binary interactions found for search term FARS2".IntAct Molecular Interaction Database.EMBL-EBI.Retrieved2018-09-05.


Further reading

[edit]
[edit]

This article incorporates text from theUnited States National Library of Medicine,which is in thepublic domain.