Jump to content

Fusa Miyake

From Wikipedia, the free encyclopedia
Fusa Miyake
NationalityJapanese
Alma materNagoya University
Scientific career
Fieldscosmic ray physics; isotope abundance and dating

Fusa Miyakeis acosmic rayphysicist atNagoya University,Japan, whose work measuring isotope abundances led to recognition of so-calledMiyake events.These have resulted in reconciling differences between dates from documents and materials such as ice-cores and tree rings.

Scientific career[edit]

Fusa Miyake gained her doctorate fromNagoya Universityin 2013 and was then appointed as an assistant professor. In 2017 she was promoted to associate professor in the Division for Cosmic Ray Research within the Space-Earth Environmental Research Division.[1]

Her doctoral research identified events in the wood of long-livedJapanese cedartrees, now calledMiyake events,where there are sudden increases incosmogenic isotopessuch as radioactivecarbonisotope14
C
,10
Be
and36
Cl
produced bycosmic raysoriginating from the Sun when large solar flares or eruptions occur. Although the event was initially proposed to be a signature of an unidentified supernova,[2]it was soon independently confirmed and proven to be the discovery of an extreme solar particle event.[3][4] The measurements utilised the14
C
polymer cellulose extracted from tree-rings formed in individual years that could be measured usingaccelerator mass spectrometry.[2][5]Detection of these isotopes in materials such astree-ringsandice cores.Measuring these isotopes in materials that have been independently dated allow the events to be dated with precision. This gives information about the Sun's long-term activity. She identified anevent in 775during her doctoral work,[6]and along with colleagues, has subsequently identified events centred on 993-4[7]and also 660 and 5480 BCE.[8]By 2023, 6 Miyake events had been identified.[5]

Her subsequent research with worldwide collaborators, and that of other researchers, has suggested that the source of the radiation causing Miyake events is more complicated than from single solar events. Some may be from multiple solar flares, influenced by tree physiology or by interactions of high energy particles with the Earth's magnetic field.[5]

Publications[edit]

Miyake is the author or coauthor of over 50 scientific publications and books. These include:

Awards[edit]

In 2017 Miyake received an Commendation Award for Young Scientists from the Japanese Minister of Education, Culture, Sports, Science and Technology. In 2022 she received the José A. Boninsegna Frontiers in Dendrochronology Award from the Tree-Ring Society.[1][9]

References[edit]

  1. ^ab"MIYAKE Fusa".Nagoya University.Retrieved20 February2024.
  2. ^abMiyake, F.; Nagaya, K.; Masuda, K.; Nakamura, T. (2012)."A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan".Nature.486(7402): 240–242.Bibcode:2012Natur.486..240M.doi:10.1038/nature11123.PMID22699615.
  3. ^Usoskin, F.; Kromer, B.; Ludlow, F.; Beer, J.; Friedrich, M.; Kovaltsov, G.; Solanki, S.K.; Wacker, L. (2013)."The AD775 cosmic event revisited: the Sun is to blame".Astron. Astrophys. Lett.552:L3.arXiv:1302.6897.Bibcode:2013A&A...552L...3U.doi:10.1051/0004-6361/201321080.
  4. ^Usoskin, F.; Kovaltsov, G. (2012)."Occurrence of Extreme Solar Particle Events: Assessment from Historical Proxy Data".Astrophys. J.757(1): 92.arXiv:1207.5932.Bibcode:2012ApJ...757...92U.doi:10.1088/0004-637X/757/1/92.
  5. ^abcKornei, Katherine."Mystery of ancient space superstorms deepens".Scientific American.Retrieved20 February2024.
  6. ^Miyake, Fusa; Masuda, Kimiaki; Nakamura, Toshio (2013)."Another rapid event in the carbon-14 content of tree rings".Nature Communications.4:1748.Bibcode:2013NatCo...4.1748M.doi:10.1038/ncomms2783.PMID23612289.S2CID256624509.
  7. ^Miyake, Fusa; Masuda, Kimiaki; Nakamura, Toshio (2013)."Another rapid event in the carbon-14 content of tree rings".Nature Communications.4:1748.Bibcode:2013NatCo...4.1748M.doi:10.1038/ncomms2783.PMID23612289.Retrieved20 February2024.
  8. ^Carlson, Erika K. (29 May 2020)."Sun's Past Hidden in Tree Rings".Physics.13:78.Bibcode:2020PhyOJ..13...78..doi:10.1103/Physics.13.78.Retrieved20 February2024.
  9. ^"José A. Boninsegna Frontiers in Dendrochronology Award was given to Associate Professor Fusa Miyake".Nagoya University - Institute for Space-Earth Environmental Research.Retrieved20 February2024.