Jump to content

Magnetite

From Wikipedia, the free encyclopedia
Magnetite
Magnetite from Bolivia
General
Category
Formula
(repeating unit)
iron(II,III) oxide,Fe2+Fe3+2O4
IMA symbolMag[1]
Strunz classification4.BB.05
Crystal systemIsometric
Crystal classHexoctahedral (m3m)
H-M symbol:(4/m32/m)
Space groupFd3m(no. 227)
Unit cella = 8.397 Å; Z = 8
Identification
ColorBlack, gray with brownish tint in reflected sun
Crystal habitOctahedral,fine granular to massive
TwinningOn {Ill} as both twin and composition plane, the spinel law, as contact twins
CleavageIndistinct, parting on {Ill}, very good
FractureUneven
TenacityBrittle
Mohs scalehardness5.5–6.5
LusterMetallic
StreakBlack
DiaphaneityOpaque
Specific gravity5.17–5.18
SolubilityDissolves slowly inhydrochloric acid
References[2][3][4][5]
Major varieties
LodestoneMagnetic with definite north and south poles
Magnetite is one of the very few minerals that isferrimagnetic;it is attracted by amagnetas shown here
Unit cell of magnetite. The gray spheres are oxygen, green are divalent iron, blue are trivalent iron. Also shown are an iron atom in an octahedral space (light blue) and another in a tetrahedral space (gray).

Magnetiteis amineraland one of the mainiron ores,with the chemical formulaFe2+Fe3+2O4.It is one of theoxides of iron,and isferrimagnetic;[6]it is attracted to amagnetand can bemagnetizedto become a permanent magnet itself.[7][8]With the exception of extremely rarenative irondeposits, it is the most magnetic of all the naturally occurring minerals on Earth.[7][9]Naturally magnetized pieces of magnetite, calledlodestone,will attract small pieces of iron, which is how ancient peoples first discovered the property of magnetism.[10]

Magnetite is black or brownish-black with a metallic luster, has aMohs hardnessof 5–6 and leaves a blackstreak.[7]Small grains of magnetite are very common inigneousandmetamorphic rocks.[11]

The chemicalIUPACname isiron(II,III) oxideand the common chemical name isferrous-ferric oxide.[12]

Properties[edit]

In addition to igneous rocks, magnetite also occurs insedimentary rocks,includingbanded iron formationsand in lake and marine sediments as both detrital grains and asmagnetofossils.Magnetite nanoparticles are also thought to form in soils, where they probably oxidize rapidly tomaghemite.[13]

Crystal structure[edit]

The chemical composition of magnetite is Fe2+(Fe3+)2(O2-)4.This indicates that magnetite contains bothferrous(divalent) andferric(trivalent) iron, suggesting crystallization in an environment containing intermediate levels of oxygen.[14][15]The main details of its structure were established in 1915. It was one of the first crystal structures to be obtained usingX-ray diffraction.The structure is inversespinel,with O2-ions forming aface-centered cubiclattice and iron cations occupyinginterstitial sites.Half of the Fe3+cations occupy tetrahedral sites while the other half, along with Fe2+cations, occupy octahedral sites. The unit cell consists of thirty-twoO2-ions and unit cell length isa= 0.839 nm.[15][16]

As a member of the inverse spinel group, magnetite can formsolid solutionswith similarly structured minerals, includingulvospinel(Fe2TiO4) andmagnesioferrite(MgFe2O4).[17]

Titanomagnetite, also known as titaniferous magnetite, is a solid solution between magnetite and ulvospinel that crystallizes in manymaficigneous rocks. Titanomagnetite may undergooxy-exsolutionduring cooling, resulting in ingrowths of magnetite and ilmenite.[17]

Crystal morphology and size[edit]

Natural and synthetic magnetite occurs most commonly asoctahedralcrystals bounded by {111} planes and asrhombic-dodecahedra.[15]Twinning occurs on the {111} plane.[3]

Hydrothermal synthesis usually produces single octahedral crystals which can be as large as 10 mm (0.39 in) across.[15]In the presence of mineralizers such as 0.1M HI or 2MNH4Cland at 0.207MPaat 416–800 °C, magnetite grew as crystals whose shapes were a combination of rhombic-dodechahedra forms.[15]The crystals were more rounded than usual. The appearance of higher forms was considered as a result from a decrease in the surface energies caused by the lower surface to volume ratio in the rounded crystals.[15]

Reactions[edit]

Magnetite has been important in understanding the conditions under which rocks form. Magnetite reacts with oxygen to producehematite,and the mineral pair forms abufferthat can control how oxidizing its environment is (theoxygenfugacity). This buffer is known as the hematite-magnetite or HM buffer. At lower oxygen levels, magnetite can form a buffer withquartzandfayaliteknown as the QFM buffer. At still lower oxygen levels, magnetite forms a buffer withwüstiteknown as the MW buffer. The QFM and MW buffers have been used extensively in laboratory experiments on rock chemistry. The QFM buffer, in particular, produces an oxygen fugacity close to that of most igneous rocks.[18][19]

Commonly,igneous rockscontain solid solutions of both titanomagnetite and hemoilmenite or titanohematite. Compositions of the mineral pairs are used to calculate oxygen fugacity: a range ofoxidizing conditionsare found in magmas and the oxidation state helps to determine how the magmas might evolve byfractional crystallization.[20]Magnetite also is produced fromperidotitesanddunitesbyserpentinization.[21]

Magnetic properties[edit]

Lodestones were used as an early form ofmagnetic compass.Magnetite has been a critical tool inpaleomagnetism,a science important in understandingplate tectonicsand as historic data formagnetohydrodynamicsand otherscientific fields.[22]

The relationships between magnetite and other iron oxide minerals such asilmenite,hematite, andulvospinelhave been much studied; thereactionsbetween these minerals and oxygen influence how and when magnetite preserves a record of theEarth's magnetic field.[23]

At low temperatures, magnetite undergoes a crystal structurephase transitionfrom a monoclinic structure to a cubic structure known as theVerwey transition.Optical studies show that this metal to insulator transition is sharp and occurs around 120K.[24]The Verwey transition is dependent on grain size, domain state, pressure,[25]and the iron-oxygenstoichiometry.[26]An isotropic point also occurs near the Verwey transition around 130K, at which point the sign of the magnetocrystalline anisotropy constant changes from positive to negative.[27]TheCurie temperatureof magnetite is 580 °C (853 K; 1,076 °F).[28]

If magnetite is in a large enough quantity it can be found inaeromagnetic surveysusing amagnetometerwhich measures magnetic intensities.[29]

Melting point[edit]

Solid magnetite particles melt at about 1,583–1,597 °C (2,881–2,907 °F).[30][31]: 794 

Distribution of deposits[edit]

Magnetite and other heavy minerals (dark) in a quartzbeachsand(Chennai,India).

Magnetite is sometimes found in large quantities in beach sand. Suchblack sands(mineral sands oriron sands) are found in various places, such asLung Kwu Tanin Hong Kong;California,United States; and the west coast of theNorth Islandof New Zealand.[32]The magnetite, eroded from rocks, is carried to the beach by rivers and concentrated by wave action and currents. Huge deposits have been found in banded iron formations.[33][34]These sedimentary rocks have been used to infer changes in the oxygen content of the atmosphere of the Earth.[35]

Large deposits of magnetite are also found in theAtacamaregion of Chile (Chilean Iron Belt);[36]theValentinesregion of Uruguay;[37]Kiruna,Sweden;[38]theTallawang regionof New South Wales;[39]and in theAdirondack MountainsofNew Yorkin the United States.[40]Kediet ej Jill,the highest mountain ofMauritania,is made entirely of the mineral.[41]In the municipalities of Molinaseca, Albares, and Rabanal del Camino, in the province of León (Spain), there is a magnetite deposit in Ordovician terrain, considered one of the largest in Europe. It was exploited between 1955 and 1982.[42]Deposits are also found inNorway,Romania,andUkraine.[43]Magnetite-rich sand dunes are found in southern Peru.[44]In 2005, an exploration company, Cardero Resources, discovered a vast deposit of magnetite-bearing sand dunes inPeru.The dune field covers 250 square kilometers (100 sq mi), with the highest dune at over 2,000 meters (6,560 ft) above the desert floor. The sand contains 10% magnetite.[45]

In large enough quantities magnetite can affectcompassnavigation.InTasmaniathere are many areas with highly magnetized rocks that can greatly influence compasses. Extra steps and repeated observations are required when using a compass in Tasmania to keep navigation problems to the minimum.[46]

Magnetite crystals with acubichabit are rare but have been found at Balmat,St. Lawrence County, New York,[47][48]and atLångban, Sweden.[49]This habit may be a result of crystallization in the presence of cations such as zinc.[50]

Magnetite can also be found infossilsdue tobiomineralizationand are referred to asmagnetofossils.[51]There are also instances of magnetite with origins inspacecoming frommeteorites.[52]

Biological occurrences[edit]

Biomagnetismis usually related to the presence of biogenic crystals of magnetite, which occur widely in organisms.[53]These organisms range frommagnetotactic bacteria(e.g.,Magnetospirillum magnetotacticum) to animals, including humans, where magnetite crystals (and other magnetically sensitive compounds) are found in different organs, depending on the species.[54][55]Biomagnetites account for the effects of weak magnetic fields on biological systems.[56]There is also a chemical basis for cellular sensitivity to electric and magnetic fields (galvanotaxis).[57]

Magnetite magnetosomes inGammaproteobacteria

Pure magnetite particles arebiomineralizedinmagnetosomes,which are produced by several species ofmagnetotactic bacteria.Magnetosomes consist of long chains of oriented magnetite particle that are used by bacteria for navigation. After the death of these bacteria, the magnetite particles in magnetosomes may be preserved in sediments as magnetofossils. Some types ofanaerobic bacteriathat are not magnetotactic can also create magnetite in oxygen free sediments by reducing amorphic ferric oxide to magnetite.[58]

Several species of birds are known to incorporate magnetite crystals in the upper beak formagnetoreception,[59]which (in conjunction withcryptochromesin theretina) gives them the ability to sense the direction,polarity,and magnitude of the ambientmagnetic field.[54][60]

Chitons,a type of mollusk, have a tongue-like structure known as aradula,covered with magnetite-coated teeth, ordenticles.[61]The hardness of the magnetite helps in breaking down food.

Biological magnetite may store information about the magnetic fields the organism was exposed to, potentially allowing scientists to learn about the migration of the organism or about changes in the Earth's magnetic field over time.[62]

Human brain[edit]

Living organisms can produce magnetite.[55]In humans, magnetite can be found in various parts of the brain including thefrontal,parietal,occipital,andtemporal lobes,brainstem,cerebellumandbasal ganglia.[55][63]Iron can be found in three forms in the brain – magnetite, hemoglobin (blood) andferritin(protein), and areas of the brain related tomotor functiongenerally contain more iron.[63][64]Magnetite can be found in thehippocampus.The hippocampus is associated with information processing, specifically learning and memory.[63]However, magnetite can have toxic effects due to its charge or magnetic nature and its involvement in oxidative stress or the production offree radicals.[65]Research suggests thatbeta-amyloidplaques andtau proteinsassociated withneurodegenerative diseasefrequently occur after oxidative stress and the build-up of iron.[63]

Some researchers also suggest that humans possess a magnetic sense,[66]proposing that this could allow certain people to use magnetoreception for navigation.[67]The role of magnetite in the brain is still not well understood, and there has been a general lag in applying more modern, interdisciplinary techniques to the study of biomagnetism.[68]

Electron microscopescans of human brain-tissue samples are able to differentiate between magnetite produced by the body's own cells and magnetite absorbed from airborne pollution, the natural forms being jagged and crystalline, while magnetite pollution occurs as roundednanoparticles.Potentially a human health hazard, airborne magnetite is a result of pollution (specifically combustion). These nanoparticles can travel to the brain via the olfactory nerve, increasing the concentration of magnetite in the brain.[63][65]In some brain samples, the nanoparticle pollution outnumbers the natural particles by as much as 100:1, and such pollution-borne magnetite particles may be linked to abnormal neural deterioration. In one study, the characteristic nanoparticles were found in the brains of 37 people: 29 of these, aged 3 to 85, had lived and died in Mexico City, a significant air pollution hotspot. Some of the further eight, aged 62 to 92, from Manchester, England, had died with varying severities of neurodegenerative diseases.[69]Such particles could conceivably contribute to diseases likeAlzheimer's disease.[70]Though a causal link has not yet been established, laboratory studies suggest that iron oxides such as magnetite are a component ofprotein plaquesin the brain. Such plaques have been linked toAlzheimer's disease.[71]

Increased iron levels, specifically magnetic iron, have been found in portions of the brain in Alzheimer's patients.[72]Monitoring changes in iron concentrations may make it possible to detect the loss of neurons and the development of neurodegenerative diseases prior to the onset of symptoms[64][72]due to the relationship between magnetite andferritin.[63]In tissue, magnetite and ferritin can produce small magnetic fields which will interact withmagnetic resonance imaging(MRI) creating contrast.[72]Huntington patients have not shown increased magnetite levels; however, high levels have been found in study mice.[63]

Applications[edit]

Due to its high iron content, magnetite has long been a majoriron ore.[73]It is reduced inblast furnacestopig ironorsponge ironfor conversion tosteel.[74]

Magnetic recording[edit]

Audio recordingusing magnetic acetate tape was developed in the 1930s. The Germanmagnetophonfirst utilized magnetite powder that BASF coated onto cellulose acetate before soon switching to gamma ferric oxide for its superior morphology.[75]FollowingWorld War II,3MCompany continued work on the German design. In 1946, the 3M researchers found they could also improve their own magnetite-based paper tape, which utilized powders of cubic crystals, by replacing the magnetite with needle-shaped particles ofgamma ferric oxide(γ-Fe2O3).[75]

Catalysis[edit]

Approximately 2–3% of the world's energy budget is allocated to theHaber Processfor nitrogen fixation, which relies on magnetite-derived catalysts. The industrial catalyst is obtained from finely ground iron powder, which is usually obtained by reduction of high-purity magnetite. The pulverized iron metal is burnt (oxidized) to give magnetite or wüstite of a defined particle size. The magnetite (or wüstite) particles are then partially reduced, removing some of theoxygenin the process. The resulting catalyst particles consist of a core of magnetite, encased in a shell of wüstite, which in turn is surrounded by an outer shell of iron metal. The catalyst maintains most of its bulk volume during the reduction, resulting in a highly porous high-surface-area material, which enhances its effectiveness as a catalyst.[76][77]

Magnetite nanoparticles[edit]

Magnetite micro- and nanoparticles are used in a variety of applications, from biomedical to environmental. One use is in water purification: in high gradient magnetic separation, magnetite nanoparticles introduced into contaminated water will bind to the suspended particles (solids, bacteria, or plankton, for example) and settle to the bottom of the fluid, allowing the contaminants to be removed and the magnetite particles to be recycled and reused.[78]This method works with radioactive and carcinogenic particles as well, making it an important cleanup tool in the case of heavy metals introduced into water systems.[79]

Another application of magnetic nanoparticles is in the creation offerrofluids.These are used in several ways. Ferrofluids can be used for targeteddrug deliveryin the human body.[78]The magnetization of the particles bound with drug molecules allows "magnetic dragging" of the solution to the desired area of the body. This would allow the treatment of only a small area of the body, rather than the body as a whole, and could be highly useful in cancer treatment, among other things. Ferrofluids are also used inmagnetic resonance imaging(MRI) technology.[80]

Coal mining industry[edit]

For theseparation of coal from waste,dense medium baths were used. This technique employed the difference in densities betweencoal(1.3–1.4 tonnes per m3) and shales (2.2–2.4 tonnes per m3). In a medium with intermediatedensity(water with magnetite), stones sank and coal floated.[81]

Magnetene[edit]

Magnetene is a two-dimensional flat sheet of magnetite noted for its ultra-low-friction properties.[82]

Gallery[edit]

See also[edit]

References[edit]

  1. ^Warr, L.N. (2021)."IMA–CNMNC approved mineral symbols".Mineralogical Magazine.85(3): 291–320.Bibcode:2021MinM...85..291W.doi:10.1180/mgm.2021.43.S2CID235729616.
  2. ^Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W."Magnetite"(PDF).Handbook of Mineralogy.Chantilly, VA: Mineralogical Society of America. p. 333.Retrieved15 November2018.
  3. ^ab"Magnetite".mindat.org and the Hudson Institute of Mineralogy.Retrieved15 November2018.
  4. ^Barthelmy, Dave."Magnetite Mineral Data".Mineralogy Database.webmineral.Retrieved15 November2018.
  5. ^Hurlbut, Cornelius S.; Klein, Cornelis (1985).Manual of Mineralogy(20th ed.). Wiley.ISBN978-0-471-80580-9.
  6. ^Jacobsen, S.D.; Reichmann, H.J.; Kantor, A.; Spetzler, H.A. (2005). "A gigahertz ultrasonic interferometer for the diamond anvil cell and high-pressure elasticity of some iron-oxide minerals". In Chen, J.; Duffy, T.S.; Dobrzhinetskaya, L.F.; Wang, Y.; Shen, G. (eds.).Advances in High-Pressure Technology for Geophysical Applications.Elsevier Science. pp. 25–48.doi:10.1016/B978-044451979-5.50004-1.ISBN978-0-444-51979-5.
  7. ^abcHurlbut, Cornelius Searle; W. Edwin Sharp; Edward Salisbury Dana (1998).Dana's minerals and how to study them.John Wiley and Sons. pp.96.ISBN978-0-471-15677-2.
  8. ^Wasilewski, Peter; Günther Kletetschka (1999). "Lodestone: Nature's only permanent magnet - What it is and how it gets charged".Geophysical Research Letters.26(15): 2275–78.Bibcode:1999GeoRL..26.2275W.doi:10.1029/1999GL900496.S2CID128699936.
  9. ^Harrison, R. J.;Dunin-Borkowski, RE;Putnis, A(2002)."Direct imaging of nanoscale magnetic interactions in minerals".Proceedings of the National Academy of Sciences.99(26): 16556–16561.Bibcode:2002PNAS...9916556H.doi:10.1073/pnas.262514499.PMC139182.PMID12482930.
  10. ^Du Trémolet de Lacheisserie, Étienne; Damien Gignoux; Michel Schlenker (2005).Magnetism: Fundamentals.Springer. pp. 3–6.ISBN0-387-22967-1.
  11. ^Nesse, William D. (2000).Introduction to mineralogy.New York: Oxford University Press. p. 361.ISBN9780195106916.
  12. ^Morel, Mauricio; Martínez, Francisco; Mosquera, Edgar (October 2013). "Synthesis and characterization of magnetite nanoparticles from mineral magnetite".Journal of Magnetism and Magnetic Materials.343:76–81.Bibcode:2013JMMM..343...76M.doi:10.1016/j.jmmm.2013.04.075.
  13. ^Maher, B. A.; Taylor, R. M. (1988). "Formation of ultrafine-grained magnetite in soils".Nature.336(6197): 368–370.Bibcode:1988Natur.336..368M.doi:10.1038/336368a0.S2CID4338921.
  14. ^Kesler, Stephen E.; Simon, Adam F. (2015).Mineral resources, economics and the environment(2nd ed.). Cambridge, United Kingdom: Cambridge University Press.ISBN9781107074910.OCLC907621860.
  15. ^abcdefCornell; Schwertmann (1996).The Iron Oxides.New York: VCH. pp. 28–30.ISBN978-3-527-28576-1.
  16. ^an alternative visualisation of the crystal structure of Magnetite using JSMol is found here.
  17. ^abNesse 2000,p. 360.
  18. ^Carmichael, Ian S.E.; Ghiorso, Mark S. (June 1986). "Oxidation-reduction relations in basic magma: a case for homogeneous equilibria".Earth and Planetary Science Letters.78(2–3): 200–210.Bibcode:1986E&PSL..78..200C.doi:10.1016/0012-821X(86)90061-0.
  19. ^Philpotts, Anthony R.; Ague, Jay J. (2009).Principles of igneous and metamorphic petrology(2nd ed.). Cambridge, UK: Cambridge University Press. pp. 261–265.ISBN9780521880060.
  20. ^McBirney, Alexander R. (1984).Igneous petrology.San Francisco, Calif.: Freeman, Cooper. pp. 125–127.ISBN0198578105.
  21. ^Yardley, B. W. D. (1989).An introduction to metamorphic petrology.Harlow, Essex, England: Longman Scientific & Technical. p. 42.ISBN0582300967.
  22. ^Nesse 2000,p. 361.
  23. ^Tauxe, Lisa (2010).Essentials of paleomagnetism.Berkeley: University of California Press.ISBN9780520260313.
  24. ^Gasparov, L. V.; et al. (2000). "Infrared and Raman studies of the Verwey transition in magnetite".Physical Review B.62(12): 7939.arXiv:cond-mat/9905278.Bibcode:2000PhRvB..62.7939G.CiteSeerX10.1.1.242.6889.doi:10.1103/PhysRevB.62.7939.S2CID39065289.
  25. ^Gasparov, L. V.; et al. (2005). "Magnetite: Raman study of the high-pressure and low-temperature effects".Journal of Applied Physics.97(10): 10A922.arXiv:0907.2456.Bibcode:2005JAP....97jA922G.doi:10.1063/1.1854476.S2CID55568498.10A922.
  26. ^Aragón, Ricardo (1985). "Influence of nonstoichiometry on the Verwey transition".Phys. Rev. B.31(1): 430–436.Bibcode:1985PhRvB..31..430A.doi:10.1103/PhysRevB.31.430.PMID9935445.
  27. ^Gubbins, D.; Herrero-Bervera, E., eds. (2007).Encyclopedia of geomagnetism and paleomagnetism.Springer Science & Business Media.
  28. ^Fabian, K.; Shcherbakov, V. P.; McEnroe, S. A. (April 2013)."Measuring the Curie temperature".Geochemistry, Geophysics, Geosystems.14(4): 947–961.Bibcode:2013GGG....14..947F.doi:10.1029/2012GC004440.hdl:11250/2491932.
  29. ^"Magnetic Surveys".Minerals Downunder.Australian Mines Atlas. 2014-05-15.Retrieved2018-03-23.
  30. ^"Magnetite".American Chemical Society.Retrieved2022-07-06.
  31. ^Perrin Walker; William H. Tarn (1991).CRC handbook of metal etchants.Boca Raton: CRC Press.ISBN0-8493-3623-6.OCLC326982496.
  32. ^Templeton, Fleur."1. Iron – an abundant resource - Iron and steel".Te Ara Encyclopedia of New Zealand.Retrieved4 January2013.
  33. ^Rasmussen, Birger; Muhling, Janet R. (March 2018). "Making magnetite late again: Evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations".Precambrian Research.306:64–93.Bibcode:2018PreR..306...64R.doi:10.1016/j.precamres.2017.12.017.
  34. ^Keyser, William; Ciobanu, Cristiana L.; Cook, Nigel J.; Wade, Benjamin P.; Kennedy, Allen; Kontonikas-Charos, Alkiviadis; Ehrig, Kathy; Feltus, Holly; Johnson, Geoff (February 2020). "Episodic mafic magmatism in the Eyre Peninsula: Defining syn- and post-depositional BIF environments for iron deposits in the Middleback Ranges, South Australia".Precambrian Research.337:105535.Bibcode:2020PreR..33705535K.doi:10.1016/j.precamres.2019.105535.S2CID210264705.
  35. ^Klein, C. (1 October 2005). "Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins".American Mineralogist.90(10): 1473–1499.Bibcode:2005AmMin..90.1473K.doi:10.2138/am.2005.1871.S2CID201124189.
  36. ^Ménard, J. -J. (June 1995). "Relationship between altered pyroxene diorite and the magnetite mineralization in the Chilean Iron Belt, with emphasis on the El Algarrobo iron deposits (Atacama region, Chile)".Mineralium Deposita.30(3–4): 268–274.Bibcode:1995MinDe..30..268M.doi:10.1007/BF00196362.S2CID130095912.
  37. ^Wallace, Roberts M. (1976)."Geological reconnaissance of some Uruguayan iron and manganese deposits in 1962"(PDF).U.S. Geological Survey Open File Report.Open-File Report. 76–466.doi:10.3133/ofr76466.Retrieved15 February2021.
  38. ^Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Lundstrom, Craig; Bindeman, Ilya; Munizaga, Rodrigo (July 2015). "Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions".Geology.43(7): 591–594.Bibcode:2015Geo....43..591K.doi:10.1130/G36650.1.hdl:10533/228146.
  39. ^Clark, David A. (September 2012). "Interpretation of the magnetic gradient tensor and normalized source strength applied to the Tallawang magnetite skarn deposit, New South Wales, Australia".SEG Technical Program Expanded Abstracts 2012:1–5.doi:10.1190/segam2012-0700.1.
  40. ^Valley, Peter M.; Hanchar, John M.; Whitehouse, Martin J. (April 2011)."New insights on the evolution of the Lyon Mountain Granite and associated Kiruna-type magnetite-apatite deposits, Adirondack Mountains, New York State".Geosphere.7(2): 357–389.Bibcode:2011Geosp...7..357V.doi:10.1130/GES00624.1.
  41. ^European Space Agency,esa.int(access: August 2, 2020)
  42. ^Calvo Rebollar, Miguel (2009).Minerales y Minas de España[Minerals and mines of Spain] (in Spanish). Vol. 4. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. pp. 73–76.ISBN978-84-95063-99-1.
  43. ^Hurlbut & Klein 1985,p. 388.
  44. ^Parker Gay, S (March 1999). "Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru".Geomorphology.27(3–4): 279–293.Bibcode:1999Geomo..27..279P.doi:10.1016/S0169-555X(98)00084-1.
  45. ^Moriarty, Bob (5 July 2005)."Ferrous Nonsnotus".321gold.Retrieved15 November2018.
  46. ^Leaman, David."Magnetic Rocks - Their Effect on Compass Use and Navigation in Tasmania"(PDF).Archived fromthe original(PDF)on 2017-03-29.Retrieved2018-03-23.
  47. ^Chamberlain, Steven C.; Robinson, George W.; Lupulescu, Marian; Morgan, Timothy C.; Johnson, John T.; deLorraine, William B. (May 2008). "Cubic and Tetrahexahedral Magnetite".Rocks & Minerals.83(3): 224–239.Bibcode:2008RoMin..83..224C.doi:10.3200/RMIN.83.3.224-239.S2CID129227218.
  48. ^"The mineral Magnetite".Minerals.net.
  49. ^Boström, Kurt (15 December 1972). "Magnetite Crystals of Cubic Habit from Långban, Sweden".Geologiska Föreningen i Stockholm Förhandlingar.94(4): 572–574.doi:10.1080/11035897209453690.
  50. ^Clark, T.M.; Evans, B.J. (1997). "Influence of chemical composition on the crystalline morphologies of magnetite".IEEE Transactions on Magnetics.33(5): 4257–4259.Bibcode:1997ITM....33.4257C.doi:10.1109/20.619728.S2CID12709419.
  51. ^Chang, S. B. R.; Kirschvink, J. L. (May 1989)."Magnetofossils, the Magnetization of Sediments, and the Evolution of Magnetite Biomineralization"(PDF).Annual Review of Earth and Planetary Sciences.17(1): 169–195.Bibcode:1989AREPS..17..169C.doi:10.1146/annurev.ea.17.050189.001125.Retrieved15 November2018.
  52. ^Barber, D. J.; Scott, E. R. D. (14 May 2002)."Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001".Proceedings of the National Academy of Sciences.99(10): 6556–6561.Bibcode:2002PNAS...99.6556B.doi:10.1073/pnas.102045799.PMC124441.PMID12011420.
  53. ^Kirschvink, J L; Walker, M M; Diebel, C E (2001). "Magnetite-based magnetoreception".Current Opinion in Neurobiology.11(4): 462–7.doi:10.1016/s0959-4388(00)00235-x.PMID11502393.S2CID16073105.
  54. ^abWiltschko, Roswitha; Wiltschko, Wolfgang (2014)."Sensing magnetic directions in birds: radical pair processes involving cryptochrome".Biosensors.4(3): 221–42.doi:10.3390/bios4030221.PMC4264356.PMID25587420.Birds can use the geomagnetic field for compass orientation. Behavioral experiments, mostly with migrating passerines, revealed three characteristics of the avian magnetic compass: (1) it works spontaneously only in a narrow functional window around the intensity of the ambient magnetic field, but can adapt to other intensities, (2) it is an "inclination compass", not based on the polarity of the magnetic field, but the axial course of the field lines, and (3) it requires short-wavelength light from UV to 565 nm Green.
  55. ^abcKirschvink, Joseph; et al. (1992)."Magnetite biomineralization in the human brain".Proceedings of the National Academy of Sciences of the USA.89(16): 7683–7687.Bibcode:1992PNAS...89.7683K.doi:10.1073/pnas.89.16.7683.PMC49775.PMID1502184.Using an ultrasensitive superconducting magnetometer in a clean-lab environment, we have detected the presence of ferromagnetic material in a variety of tissues from the human brain.
  56. ^Kirschvink, J L; Kobayashi-Kirschvink, A; Diaz-Ricci, J C; Kirschvink, S J (1992). "Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields".Bioelectromagnetics.Suppl 1: 101–13.CiteSeerX10.1.1.326.4179.doi:10.1002/bem.2250130710.PMID1285705.A simple calculation shows that magnetosomes moving in response to earth-strength ELF fields are capable of opening trans-membrane ion channels, in a fashion similar to those predicted by ionic resonance models. Hence, the presence of trace levels of biogenic magnetite in virtually all human tissues examined suggests that similar biophysical processes may explain a variety of weak field ELF bioeffects.
  57. ^Nakajima, Ken-ichi; Zhu, Kan; Sun, Yao-Hui; Hegyi, Bence; Zeng, Qunli; Murphy, Christopher J; Small, J Victor; Chen-Izu, Ye; Izumiya, Yoshihiro; Penninger, Josef M; Zhao, Min (2015)."KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis".Nature Communications.6:8532.Bibcode:2015NatCo...6.8532N.doi:10.1038/ncomms9532.PMC4603535.PMID26449415.Taken together these data suggest a previously unknown two-molecule sensing mechanism in which KCNJ15/Kir4.2 couples with polyamines in sensing weak electric fields.
  58. ^Lovley, Derek; Stolz, John; Nord, Gordon; Phillips, Elizabeth."Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism"(PDF).geobacter.org.US Geological Survey, Reston, Virginia 22092, USA Department of Biochemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA. Archived fromthe original(PDF)on 29 March 2017.Retrieved9 February2018.
  59. ^Kishkinev, D A; Chernetsov, N S (2014). "[Magnetoreception systems in birds: a review of current research]".Zhurnal Obshcheĭ Biologii.75(2): 104–23.Bibcode:2015BioBR...5...46K.doi:10.1134/S2079086415010041.PMID25490840.There are good reasons to believe that this visual magnetoreceptor processes compass magnetic information which is necessary for migratory orientation.
  60. ^Wiltschko, Roswitha; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang (2010)."Directional orientation of birds by the magnetic field under different light conditions".Journal of the Royal Society, Interface.7(Suppl 2): S163–77.doi:10.1098/rsif.2009.0367.focus.PMC2843996.PMID19864263.Compass orientation controlled by the inclination compass...allows birds to locate courses of different origin
  61. ^Lowenstam, H.A.(1967). "Lepidocrocite, an apatite mineral, and magnetic in teeth of chitons (Polyplacophora)".Science.156(3780): 1373–1375.Bibcode:1967Sci...156.1373L.doi:10.1126/science.156.3780.1373.PMID5610118.S2CID40567757.X-ray diffraction patterns show that the mature denticles of three extant chiton species are composed of the mineral lepidocrocite and an apatite mineral, probably francolite, in addition to magnetite.
  62. ^Bókkon, Istvan; Salari, Vahid (2010)."Information storing by biomagnetites".Journal of Biological Physics.36(1): 109–20.arXiv:1012.3368.Bibcode:2010arXiv1012.3368B.doi:10.1007/s10867-009-9173-9.PMC2791810.PMID19728122.
  63. ^abcdefgMagnetite Nano-Particles in Information Processing: From the Bacteria to the Human Brain Neocortex -ISBN9781-61761-839-0
  64. ^abZecca, Luigi; Youdim, Moussa B. H.; Riederer, Peter; Connor, James R.; Crichton, Robert R. (2004). "Iron, brain ageing and neurodegenerative disorders".Nature Reviews Neuroscience.5(11): 863–873.doi:10.1038/nrn1537.PMID15496864.S2CID205500060.
  65. ^abBarbara A. Maher; Imad A. M. Ahmed; Vassil Karloukovski; Donald A. MacLaren; Penelope G. Foulds; David Allsop; David M. A. Mann; Ricardo Torres-Jardón; Lilian Calderon-Garciduenas (2016)."Magnetite pollution nanoparticles in the human brain".PNAS.113(39): 10797–10801.Bibcode:2016PNAS..11310797M.doi:10.1073/pnas.1605941113.PMC5047173.PMID27601646.
  66. ^Eric Hand (June 23, 2016)."Maverick scientist thinks he has discovered a magnetic sixth sense in humans".Science.doi:10.1126/science.aaf5803.
  67. ^Baker, R R (1988). "Human magnetoreception for navigation".Progress in Clinical and Biological Research.257:63–80.PMID3344279.
  68. ^Kirschvink, Joseph L; Winklhofer, Michael; Walker, Michael M (2010)."Biophysics of magnetic orientation: strengthening the interface between theory and experimental design".Journal of the Royal Society, Interface.7(Suppl 2): S179–91.doi:10.1098/rsif.2009.0491.focus.PMC2843999.PMID20071390.
  69. ^"Pollution particles 'get into brain'".BBC News.September 5, 2016.
  70. ^Maher, B.A.; Ahmed, I.A.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.; Torres-Jardón, R.; Calderon-Garciduenas, L. (2016)."Magnetite pollution nanoparticles in the human brain".Proceedings of the National Academy of Sciences.113(39): 10797–10801.Bibcode:2016PNAS..11310797M.doi:10.1073/pnas.1605941113.PMC5047173.PMID27601646.
  71. ^Wilson, Clare (5 September 2016)."Air pollution is sending tiny magnetic particles into your brain".New Scientist.231(3090).Retrieved6 September2016.
  72. ^abcQin, Yuanyuan; Zhu, Wenzhen; Zhan, Chuanjia; Zhao, Lingyun; Wang, Jianzhi; Tian, Qing; Wang, Wei (August 2011). "Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2′ mapping".Journal of Huazhong University of Science and Technology [Medical Sciences].31(4): 578–585.doi:10.1007/s11596-011-0493-1.PMID21823025.S2CID21437342.
  73. ^Franz Oeters et al "Iron" in Ullmann's Encyclopedia of Industrial Chemistry, 2006, Wiley-VCH, Weinheim.doi:10.1002/14356007.a14_461.pub2
  74. ^Davis, E.W. (2004).Pioneering with taconite.Minnesota Historical Society Press.ISBN0873510232.
  75. ^abSchoenherr, Steven (2002)."The History of Magnetic Recording".Audio Engineering Society.
  76. ^Jozwiak, W. K.; Kaczmarek, E.; et al. (2007). "Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres".Applied Catalysis A: General.326:17–27.doi:10.1016/j.apcata.2007.03.021.
  77. ^Appl, Max (2006). "Ammonia".Ullmann's Encyclopedia of Industrial Chemistry.Weinheim: Wiley-VCH.doi:10.1002/14356007.a02_143.pub2.ISBN978-3527306732.
  78. ^abBlaney, Lee (2007)."Magnetite (Fe3O4): Properties, Synthesis, and Applications".The Lehigh Review.15(5). Archived fromthe originalon 2020-11-11.Retrieved2017-12-15.
  79. ^Rajput, Shalini; Pittman, Charles U.; Mohan, Dinesh (2016). "Magnetic magnetite (Fe 3 O 4 ) nanoparticle synthesis and applications for lead (Pb 2+ ) and chromium (Cr 6+ ) removal from water".Journal of Colloid and Interface Science.468:334–346.Bibcode:2016JCIS..468..334R.doi:10.1016/j.jcis.2015.12.008.PMID26859095.
  80. ^Stephen, Zachary R.; Kievit, Forrest M.;Zhang, Miqin(2011)."Magnetite nanoparticles for medical MR imaging".Materials Today.14(7–8): 330–338.doi:10.1016/s1369-7021(11)70163-8.PMC3290401.PMID22389583.
  81. ^Nyssen, J; Diependaele, S; Goossens, R (2012). "Belgium's burning coal tips - coupling thermographic ASTER imagery with topography to map debris slide susceptibility".Zeitschrift für Geomorphologie.56(1): 23–52.Bibcode:2012ZGm....56...23N.doi:10.1127/0372-8854/2011/0061.
  82. ^Toronto, University of."Magnetene: Graphene-like 2D material leverages quantum effects to achieve ultra-low friction".phys.org.

Further reading[edit]

External links[edit]