Jump to content

Flattening

From Wikipedia, the free encyclopedia
(Redirected fromOblateness)
A circle of radiusacompressed to an ellipse.
A sphere of radiusacompressed to an oblate ellipsoid of revolution.

Flatteningis a measure of the compression of acircleorspherealong a diameter to form anellipseor anellipsoidof revolution (spheroid) respectively. Other terms used areellipticity,oroblateness.The usual notation for flattening isand its definition in terms of thesemi-axesandof the resulting ellipse or ellipsoid is

Thecompression factorisin each case; for the ellipse, this is also itsaspect ratio.

Definitions

[edit]

There are three variants: the flattening[1]sometimes called thefirst flattening,[2]as well as two other "flattenings"andeach sometimes called thesecond flattening,[3]sometimes only given a symbol,[4]or sometimes called thesecond flatteningandthird flattening,respectively.[5]

In the following,is the larger dimension (e.g. semimajor axis), whereasis the smaller (semiminor axis). All flattenings are zero for a circle (a=b).

(First) flattening Fundamental. Geodeticreference ellipsoidsare specified by giving
Second flattening Rarely used.
Third flattening  Used in geodetic calculations as a small expansion parameter.[6]

Identities

[edit]

The flattenings can be related to each-other:

The flattenings are related to other parameters of the ellipse. For example,

whereis theeccentricity.

See also

[edit]

References

[edit]
  1. ^Snyder, John P. (1987).Map Projections: A Working Manual.U.S. Geological Survey Professional Paper. Vol. 1395. Washington, D.C.: U.S. Government Printing Office.doi:10.3133/pp1395.
  2. ^ Tenzer, Róbert (2002)."Transformation of the Geodetic Horizontal Control to Another Reference Ellipsoid".Studia Geophysica et Geodaetica.46(1): 27–32.doi:10.1023/A:1019881431482.S2CID117114346.ProQuest750849329.
  3. ^For example,is called thesecond flatteningin:Taff, Laurence G. (1980).An Astronomical Glossary(Technical report). MIT Lincoln Lab. p. 84.
    However,is called thesecond flatteningin:Hooijberg, Maarten (1997).Practical Geodesy: Using Computers.Springer. p. 41.doi:10.1007/978-3-642-60584-0_3.
  4. ^Maling, Derek Hylton (1992).Coordinate Systems and Map Projections(2nd ed.). Oxford; New York:Pergamon Press.p. 65.ISBN0-08-037233-3.
    Rapp, Richard H. (1991).Geometric Geodesy, Part I(Technical report). Ohio State Univ. Dept. of Geodetic Science and Surveying.
    Osborne, P. (2008)."The Mercator Projections"(PDF).§5.2. Archived fromthe original(PDF)on 2012-01-18.
  5. ^Lapaine, Miljenko (2017). "Basics of Geodesy for Map Projections". In Lapaine, Miljenko; Usery, E. Lynn (eds.).Choosing a Map Projection.Lecture Notes in Geoinformation and Cartography. pp. 327–343.doi:10.1007/978-3-319-51835-0_13.ISBN978-3-319-51834-3.
    Karney, Charles F.F. (2023). "On auxiliary latitudes".Survey Review:1–16.arXiv:2212.05818.doi:10.1080/00396265.2023.2217604.S2CID254564050.
  6. ^F. W. Bessel, 1825,Uber die Berechnung der geographischen Langen und Breiten aus geodatischen Vermessungen,Astron.Nachr.,4(86), 241–254,doi:10.1002/asna.201011352,translated into English by C. F. F. Karney and R. E. Deakin asThe calculation of longitude and latitude from geodesic measurements,Astron. Nachr.331(8), 852–861 (2010), E-printarXiv:0908.1824,Bibcode:1825AN......4..241B