Jump to content

Quantum metrology

From Wikipedia, the free encyclopedia

Quantum metrologyis the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems,[1][2][3][4][5][6]particularly exploitingquantum entanglementand quantumsqueezing.This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing,[7][8]it represents an important theoretical model at the basis of quantum sensing.[9][10]

Mathematical foundations[edit]

A basic task of quantum metrology is estimating the parameter of the unitary dynamics

whereis the initial state of the system andis the Hamiltonian of the system.is estimated based on measurements on

Typically, the system is composed of many particles, and the Hamiltonian is a sum of single-particle terms

whereacts on thekth particle. In this case, there is no interaction between the particles, and we talk aboutlinear interferometers.

The achievable precision is bounded from below by thequantum Cramér-Rao boundas

whereis the number of independent repetitions andis thequantum Fisher information.[1][11]

Examples[edit]

One example of note is the use of theNOON statein aMach–Zehnder interferometerto perform accurate phase measurements.[12]A similar effect can be produced using less exotic states such assqueezed states.In quantum illumination protocols, two-mode squeezed states are widely studied to overcome the limit of classcial states represented incoherent states.In atomic ensembles,spin squeezed statescan be used for phase measurements.

Applications[edit]

An important application of particular note is the detection ofgravitational radiationin projects such asLIGOor theVirgo interferometer,where high-precision measurements must be made for the relative distance between two widely separated masses. However, the measurements described by quantum metrology are currently not used in this setting, being difficult to implement. Furthermore, there are other sources of noise affecting the detection of gravitational waves which must be overcome first. Nevertheless, plans may call for the use of quantum metrology in LIGO.[13]

Scaling and the effect of noise[edit]

A central question of quantum metrology is how the precision, i.e., the variance of the parameter estimation, scales with the number of particles. Classical interferometers cannot overcome the shot-noise limit. This limit is also frequently called standard quantum limit (SQL)

where isthe number of particles. Shot-noise limit is known to be asymptotically achievable using coherent states and homodyne detection.[14]

Quantum metrology can reach theHeisenberg limitgiven by

However, if uncorrelated local noise is present, then for large particle numbers the scaling of the precision returns to shot-noise scaling[15][16]

Relation to quantum information science[edit]

There are strong links between quantum metrology and quantum information science. It has been shown thatquantum entanglementis needed to outperform classical interferometry in magnetrometry with a fully polarized ensemble of spins.[17]It has been proved that a similar relation is generally valid for any linear interferometer, independent of the details of the scheme.[18]Moreover, higher and higher levels of multipartite entanglement is needed to achieve a better and better accuracy in parameter estimation.[19][20]Additionally, entanglement in multiple degrees of freedom of quantum systems (known as "hyperentanglement" ), can be used to enhance precision, with enhancement arising from entanglement in each degree of freedom.[21]

See also[edit]

References[edit]

  1. ^abBraunstein, Samuel L.; Caves, Carlton M. (May 30, 1994). "Statistical distance and the geometry of quantum states".Physical Review Letters.72(22). American Physical Society (APS): 3439–3443.Bibcode:1994PhRvL..72.3439B.doi:10.1103/physrevlett.72.3439.ISSN0031-9007.PMID10056200.
  2. ^Paris, Matteo G. A. (November 21, 2011). "Quantum Estimation for Quantum Technology".International Journal of Quantum Information.07(supp01): 125–137.arXiv:0804.2981.doi:10.1142/S0219749909004839.S2CID2365312.
  3. ^Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo (March 31, 2011). "Advances in quantum metrology".Nature Photonics.5(4): 222–229.arXiv:1102.2318.Bibcode:2011NaPho...5..222G.doi:10.1038/nphoton.2011.35.S2CID12591819.
  4. ^Tóth, Géza; Apellaniz, Iagoba (October 24, 2014)."Quantum metrology from a quantum information science perspective".Journal of Physics A: Mathematical and Theoretical.47(42): 424006.arXiv:1405.4878.Bibcode:2014JPhA...47P4006T.doi:10.1088/1751-8113/47/42/424006.
  5. ^Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K.; Schmied, Roman; Treutlein, Philipp (September 5, 2018). "Quantum metrology with nonclassical states of atomic ensembles".Reviews of Modern Physics.90(3): 035005.arXiv:1609.01609.Bibcode:2018RvMP...90c5005P.doi:10.1103/RevModPhys.90.035005.S2CID119250709.
  6. ^Braun, Daniel; Adesso, Gerardo; Benatti, Fabio; Floreanini, Roberto; Marzolino, Ugo; Mitchell, Morgan W.; Pirandola, Stefano (September 5, 2018). "Quantum-enhanced measurements without entanglement".Reviews of Modern Physics.90(3): 035006.arXiv:1701.05152.Bibcode:2018RvMP...90c5006B.doi:10.1103/RevModPhys.90.035006.S2CID119081121.
  7. ^Helstrom, C (1976).Quantum detection and estimation theory.Academic Press.ISBN0123400503.
  8. ^Holevo, Alexander S (1982).Probabilistic and statistical aspects of quantum theory([2nd English.] ed.). Scuola Normale Superiore.ISBN978-88-7642-378-9.
  9. ^Pirandola, S; Bardhan, B. R.; Gehring, T.; Weedbrook, C.; Lloyd, S. (2018). "Advances in photonic quantum sensing".Nature Photonics.12(12): 724–733.arXiv:1811.01969.Bibcode:2018NaPho..12..724P.doi:10.1038/s41566-018-0301-6.S2CID53626745.
  10. ^Kapale, Kishor T.; Didomenico, Leo D.; Kok, Pieter; Dowling, Jonathan P. (July 18, 2005)."Quantum Interferometric Sensors"(PDF).The Old and New Concepts of Physics.2(3–4): 225–240.
  11. ^Braunstein, Samuel L.; Caves, Carlton M.; Milburn, G.J. (April 1996). "Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance".Annals of Physics.247(1): 135–173.arXiv:quant-ph/9507004.Bibcode:1996AnPhy.247..135B.doi:10.1006/aphy.1996.0040.S2CID358923.
  12. ^Kok, Pieter; Braunstein, Samuel L; Dowling, Jonathan P (July 28, 2004)."Quantum lithography, entanglement and Heisenberg-limited parameter estimation"(PDF).Journal of Optics B: Quantum and Semiclassical Optics.6(8). IOP Publishing: S811–S815.arXiv:quant-ph/0402083.Bibcode:2004JOptB...6S.811K.doi:10.1088/1464-4266/6/8/029.ISSN1464-4266.S2CID15255876.
  13. ^Kimble, H. J.; Levin, Yuri; Matsko, Andrey B.; Thorne, Kip S.; Vyatchanin, Sergey P. (December 26, 2001)."Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics"(PDF).Physical Review D.65(2). American Physical Society (APS): 022002.arXiv:gr-qc/0008026.Bibcode:2001PhRvD..65b2002K.doi:10.1103/physrevd.65.022002.hdl:1969.1/181491.ISSN0556-2821.S2CID15339393.
  14. ^Guha, Saikatł; Erkmen, Baris (November 10, 2009). "Gaussian-state quantum-illumination receivers for target detection".Physical Review A.80(5): 052310.arXiv:0911.0950.Bibcode:2009PhRvA..80e2310G.doi:10.1103/PhysRevA.80.052310.S2CID109058131.
  15. ^Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin (September 18, 2012)."The elusive Heisenberg limit in quantum-enhanced metrology".Nature Communications.3:1063.arXiv:1201.3940.Bibcode:2012NatCo...3.1063D.doi:10.1038/ncomms2067.PMC3658100.PMID22990859.
  16. ^Escher, B. M.; Filho, R. L. de Matos; Davidovich, L. (May 2011). "General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology".Nature Physics.7(5): 406–411.arXiv:1201.1693.Bibcode:2011NatPh...7..406E.doi:10.1038/nphys1958.ISSN1745-2481.S2CID12391055.
  17. ^Sørensen, Anders S. (2001). "Entanglement and Extreme Spin Squeezing".Physical Review Letters.86(20): 4431–4434.arXiv:quant-ph/0011035.Bibcode:2001PhRvL..86.4431S.doi:10.1103/physrevlett.86.4431.PMID11384252.S2CID206327094.
  18. ^Pezzé, Luca; Smerzi, Augusto (2009). "Entanglement, Nonlinear Dynamics, and the Heisenberg Limit".Physical Review Letters.102(10): 100401.arXiv:0711.4840.Bibcode:2009PhRvL.102j0401P.doi:10.1103/physrevlett.102.100401.PMID19392092.S2CID13095638.
  19. ^Hyllus, Philipp (2012). "Fisher information and multiparticle entanglement".Physical Review A.85(2): 022321.arXiv:1006.4366.Bibcode:2012PhRvA..85b2321H.doi:10.1103/physreva.85.022321.S2CID118652590.
  20. ^Tóth, Géza (2012). "Multipartite entanglement and high-precision metrology".Physical Review A.85(2): 022322.arXiv:1006.4368.Bibcode:2012PhRvA..85b2322T.doi:10.1103/physreva.85.022322.S2CID119110009.
  21. ^Walborn, S. P.; Pimentel, A. H.; Filho, R. L. de Matos; Davidovich, L. (January 2018). "Quantum-enhanced sensing from hyperentanglement".Physical Review A.97(1): 010301(R).arXiv:1709.04513.Bibcode:2018PhRvA..97a0301W.doi:10.1103/PhysRevA.97.010301.S2CID73689445.