Jump to content

Ranger 9

Page semi-protected
From Wikipedia, the free encyclopedia

Ranger 9
Ranger 9
Mission typeLunar impactor
OperatorNASA
COSPAR ID1965-023AEdit this at Wikidata
SATCATno.1294
Mission duration2 days, 16 hours, 31 minutes
Spacecraft properties
ManufacturerJet Propulsion Laboratory
Launch mass366.87 kg[1]
Power200 W
Start of mission
Launch date21 March 1965, 21:37:02(1965-03-21UTC21:37:02Z)UTC[1]
RocketAtlas LV-3 Agena-B204D/AA14
Launch siteCape CanaveralLC-12
Lunarimpactor
Impact date24 March 1965, 14:08:19.994(1965-03-24UTC14:08:20Z)UTC
Impact site12°50′S2°22′W/ 12.83°S 02.37°W/-12.83; -02.37
(Alphonsus crater)
None

Ranger 9was aLunarprobe, launched in 1965 byNASA.It was designed to achieve a lunar impacttrajectoryand to transmit high-resolution photographs of the lunar surface during the final minutes of flight up to impact. The spacecraft carried six televisionvidiconcameras—two wide-angle (channel F, cameras A and B) and four narrow-angle (channel P)—to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-qualitytelevisionpictures. These images were broadcast live on television to millions of viewers across the United States.[2]No other experiments were carried on the spacecraft.[3]

Spacecraft design

Artist impression of Ranger 9's last seconds.

Rangers6,7,8,and 9 were the so-calledBlock 3versions of theRanger spacecraft.The spacecraft consisted of a hexagonalaluminiumframe base 1.5 m across on which was mounted the propulsion and power units, topped by a truncated conical tower which held the TV cameras. Twosolar panelwings, each 739 mm wide by 1537 mm long, extended from opposite edges of the base with a full span of 4.6 m, and a pointable high-gaindish antennawas hinge mounted at one of the corners of the base away from the solar panels. A cylindrical quasiomnidirectional antenna was seated on top of the conical tower. The overall height of the spacecraft was 3.6 m.[3]

Propulsion for the mid-coursetrajectorycorrection was provided by a 224-N thrust monopropellanthydrazineengine with four jet-vanethrust vectoring.Orientation and attitude control about three axes was enabled by 12nitrogen gasjets coupled to a system of threegyroscopes,four primary Sun sensors, two secondary Sun sensors, and an Earth sensor. Power was supplied by 9792 Si solar cells contained in the two solar panels, giving a total array area of 2.3 square meters and producing 200 W. Two 1,200 watt-hour batteries rated at 26.5 V with a capacity for 9 hours of operation provided power to each of the separate communication/TV camera chains. Two 1,000 watt-hour batteries stored power for spacecraft operations.[3]

Communications were through the quasiomnidirectionallow-gain antennaand the parabolichigh-gain antenna.Transmitters aboard the spacecraft included a 60 W TV channel F at 959.52 MHz, a 60 W TV channel P at 960.05 MHz, and a 3 W transponder channel 8 at 960.58 MHz. The telecommunications equipment converted the composite video signal from the camera transmitters into an RF signal for subsequent transmission through the spacecraft high-gain antenna. Sufficient video bandwidth was provided to allow for rapid framing sequences of both narrow and wide-angle television pictures.[3]

Mission profile

Images from Ranger 9 during its descent
Ranger 9 image showingrilleson the floor ofAlphonsus Crater.

TheAtlas 204DandAgena B 6007boosters performed nominally, injecting theAgenaand Ranger 9 into anEarthparking orbit at 185-kilometre (115 mi) altitude. A 90-second Agena second burn put the spacecraft into lunar transfer trajectory. This was followed by the separation of the Agena and Ranger. Seventy minutes after launch, the command was given to deploy solar panels, activate attitude control, and switch from the omniantenna to the high-gain antenna. The accuracy of the initial trajectory enabled delay of the planned mid-course correction from 22 to 23 March when the maneuver was initiated at 12:03 UT. After orientation, a 31-second rocket burn at 12:30 UT, and reorientation, the maneuver was completed at 13:30 UT.[3]

Ranger 9 reached theMoonon 24 March 1965. At 13:31 UTC, a terminal maneuver was executed to orient the spacecraft so the cameras were more in line with the flight direction to improve the resolution of the pictures. 20 minutes before impact, the one-minute camera system warm-up began. The first image was taken at 13:49:41 UTC at an altitude of 2,363 kilometres (1,468 mi). Transmission of 5,814 good contrast photographs was made during the final 19 minutes of flight. The final image taken before impact has a resolution of 0.3 metres (12 in). The spacecraft encountered the lunar surface with an incoming asymptotic direction at an angle of -5.6 degrees from the lunar equator. The orbit plane was inclined 15.6 degrees to the lunar equator. After 64.5 hours of flight, impact occurred at 14:08:19.994 UTC at approximately 12.83 S latitude, 357.63 E longitude in theAlphonsuscrater. Impact velocity was 2,670 metres per second (8,800 ft/s). The spacecraft performance was excellent. Real-time television coverage with live network broadcasts of many of the F-channel images (primarily camera B but also some camera A pictures) were provided for this flight.[3]

See also

References

  1. ^ab"Ranger 9".NASA's Solar System Exploration website.RetrievedDecember 1,2022.
  2. ^Cecil, Gregory (21 March 2015)."Our SpaceFlight Heritage: 50 Years since the launch of Ranger 9".Spaceflight Insider.
  3. ^abcdef"Ranger 9".National Space Science Data Center.NASA.Retrieved24 May2012.

External links