Jump to content

SOLRAD 9

From Wikipedia, the free encyclopedia
(Redirected fromSolrad 9)
Solrad 9
Solrad 9.
Mission typeSolarscience
OperatorNASA
COSPAR ID1968-017A[1]
SATCATno.3141
Mission duration22 years, 8 months and 10 days
(final)
Spacecraft properties
ManufacturerNaval Research Laboratory
Launch mass198 kilograms (437 lb)
Start of mission
Launch date5 March 1968, 18:28(1968-03-05UTC18:28Z)UTC[2][3]
RocketScout B-1S160C
Launch siteWallops LA-3A[3]
End of mission
Last contactMarch 1974
Decay date16 November 1990(1990-11-17)[4]
Orbital parameters
Reference systemGeocentric
RegimeLow Earth
Eccentricity0.01372
Perigee altitude448 kilometers (278 mi)
Apogee altitude638 kilometers (396 mi)
Inclination59.4°
Period95.5 minutes
Epoch5 March 1968[1]
Instruments
14Photometers(UVandX-ray)

Solrad 9,also knownExplorer 37andExplorer SE-B,was one of the SOLRAD (Solar Radiation) program that began in 1960 to provide continuous coverage of solar radiation with a set of standard photometers.

Launch and operations[edit]

Was launched on March 5, 1968 fromWallops Flight Facility,Virginia,United States,withScoutlaunch vehicle.[5]

Solrad 9 was a spin stabilized satellite oriented with its spin axisperpendicularto the sun-satellite line so that the 14 solarX-rayandUVphotometerspointing radially outward from itsequatorial beltviewed the sun with each revolution. Data were simultaneously transmitted viaFM/AMtelemetryand recorded in a core memory that read out its contents on command. Individual scientists and institutions were invited to receive and use the data transmitted on the 136 MHz telemetry band on the standard IRIG channels three through eight.[1][6]

In the time that elapsed between the termination ofSolrad 8operations in August 1967 and the orbiting of Solrad 9, solar activity data were obtained using photometers in satellitesOSO-4andOGO-4.

Solrad 9 was particularly important among the Solrad series satellites because thanks to the collected data were useful to predict the behavior of the sun during the period of the first crewed missions of theApollo Program,starting from the first,Apollo 7,it is therefore useful to draw up a mission program to ensure, from this point of view, the safety ofastronauts.[6]It recorded important data on one of the strongestsolar stormsthat occurred betweenApollo 9andApollo 10and which would have produced potentially hazardous (to even fatal) effects to astronauts had then been in space (if the spacecraft were outside the Earth's protectivemagnetosphere) at the time.[7]

As of July 1971, it was decided to use theSolrad 10memory data, put into orbit on the 8th of the same month, and so continued until June 1973, when theSolrad 10data storage device had a bad operation andNASAbegan to read data from the memory of Solrad 9. The satellite remained active until February 25, 1974, when the gas reserves useful to maintain control of the facility were over. Once the stability was lost, in fact, the satellite became useless and therefore was turned off.

UnlikeSolrad 8,its predecessor, Solrad 9 did not remain in orbit and returned to theatmosphere,disintegrating on November 16, 1990.[1]

References[edit]

  1. ^abcd"Solrad 9".NSSDCA.NASA Goddard Space Flight Center.Retrieved17 June2018.Public DomainThis article incorporates text from this source, which is in thepublic domain.
  2. ^"Solar Observing satellites".Colorado State University.Retrieved17 June2018.
  3. ^abMcDowell, Jonathan."Launch Log".Joanthan's Space Page.Retrieved17 June2018.
  4. ^"Explorer 37 (SE-B)".n2yo.Retrieved17 June2018.
  5. ^Vítek, Antonín (7 December 2004)."1968-017A - Explorer 37".Space 40(in Czech).Retrieved17 June2018.
  6. ^ab"United States Space Science Program: Report to COSPAR".National Academies, 1969, p. 27.National Research Council. Space Science Board,COSPAR.1969.Retrieved17 June2018.
  7. ^Lockwood, Mike; M. Hapgood (2007)."The Rough Guide to the Moon and Mars"(PDF).Astron. Geophys.48(6): 11–17.Bibcode:2007A&G....48f..11L.doi:10.1111/j.1468-4004.2007.48611.x.