Jump to content

VITO experiment

From Wikipedia, the free encyclopedia
Isotope Separator On Line Device
(ISOLDE)
List of ISOLDE experimental setups
COLLAPS,CRIS,EC-SLI,IDS,ISS,ISOLTRAP,LUCRECIA,Miniball,MIRACLS,SEC,VITO,WISArD
Other facilities
MEDICISMedical Isotopes Collected from ISOLDE
508Solid State Physics Laboratory
The VITO beamline area in the ISOLDE facility

TheVersatile Ion polarisation Technique Online(VITO)experimentis a permanent experimental setup located in theISOLDE facilityatCERN,in the form of abeamline.The purpose of the beamline is to perform a wide range of studies using spin-polarised short-livedatomic nuclei.VITO usescircularly-polarisedlaser light to obtain polarised radioactive beams of different isotopes delivered by ISOLDE. These have already been used forweak-interactionstudies, biological investigations, and more recentlynuclear structureresearch.[1][2]The beamline is located at the site of the formerUltra High Vacuum(UHV) beamline hosting ASPIC.[3]

Beamline setup

[edit]

Radioactive ion beams (RIBs) are produced by the ISOLDE facility, using a beam of high-energy protons from theProtonSynchrotron Booster(PSB) incident on a target. The interaction of the beam and the target produces radioactive species, which are extracted through thermal diffusion by heating the target.[4]The beam of radioactive ions is then separated by mass number by one of the two mass separators at the facility.[5]The resulting low-energy beam is delivered to the various experimental stations.[6]

The VITO beamline is modular. The first part is common for all projects and is devoted to atomic polarisation viaoptical pumpingwith circularly polarised laser light. The singly-charged ion beam of short-lived isotopes from ISOLDE (RIB) isDoppler-tuned inresonancewith the laser light provided by a continuous-wavetunable laser.Next, the beam may be neutralised, before it reaches a 1.5 m long section in which the ion or atom beam is overlapped with the laser and they interact many times (manyexcitation-decay cycles take place), leading to the polarisation of theatomic spins.[2]

The polarised beam is then transported to one of the setups that can be placed behind the polarisation line. At this point the polarised beam is implanted into a solid or liquid host. A strongmagnetic fieldsurrounding the sample allowing the nuclear spin polarisation to be maintained for dozens of milliseconds to seconds, by decoupling the electron and nuclear spin. In these conditions, the degree of spin polarisation and its changes can be monitored extremely efficiently by observing the spatialasymmetryin the emission of beta particles by the decaying short-lived nuclei.[7]This is possible, because the weak force that is responsible for the beta decay does not conserveparity.As few as several thousands decays might be enough to record a good signal.

Nuclear Magnetic Resonance (NMR)

[edit]

Nuclear Magnetic Resonance(NMR) is a technique that provides information on the environment of a nucleus, from calculations based on the shift inLarmor frequencyorrelaxation time.β-NMR is a modification of this basic technique using the idea thatbeta decayfrom polarised radioactive nuclei isanisotropic(directional) in space. Theresonancesare detected as change in the beta-decayasymmetrywhich gives it a much highersignalstrength than conventional NMR (up to 10 orders of magnitude).[8]

Results

[edit]

One of the first experiments using polarised beams at VITO was devoted polarisation of amirror-nucleusargon-35. The scientific motivation for this project was provided by the weak interaction studies and the determination of the Vudmatrix element in theCKM quark mi xing matrix.[9][10]

Latest setup for β-NMR at VITO

The next, gradually upgraded, setup is centred around a high-field magnet, liquid samples andradio frequencyexcitations. The aim is to develop a method of beta-detected Nuclear Magnetic Resonance (β-NMR) to investigate the interaction ofmetal ionswithbiomoleculesin liquids.[11][12]

The most recent studies at VITO concern the determination of spins and parities in excited nuclear states, poplulated by beta decay. In this case, the setup consists of a solid sample, surrounded by a compact magnet that allows forgamma radiationand neutrons to reach the decayspectroscopysetup.[13]

[edit]

References

[edit]
  1. ^"VITO | ISOLDE".isolde.cern.Retrieved2023-08-14.
  2. ^abKowalska, M; Aschenbrenner, P; Baranowski, M; Bissell, M L; Gins, W; Harding, R D; Heylen, H; Neyens, G; Pallada, S; Severijns, N; Velten, Ph; Walczak, M; Wienholtz, F; Xu, Z Y; Yang, X F (2017-08-01)."New laser polarization line at the ISOLDE facility"(PDF).Journal of Physics G: Nuclear and Particle Physics.44(8): 084005.Bibcode:2017JPhG...44h4005K.doi:10.1088/1361-6471/aa77d7.ISSN0954-3899.S2CID126306945.
  3. ^Stachura, Monika; Karl, Johnston; et al. (14 Jan 2015)."VITO setup: Status Report"(PDF).ISOLDE and Neutron Time-of-Flight Experiments Committee.
  4. ^Peräjärvi, K.; Bergmann, U. C.; Fedoseyev, V. N.; Joinet, A.; Köster, U.; Lau, C.; Lettry, J.; Ravn, H.; Santana-Leitner, M. (2003-05-01)."Studies of release properties of ISOLDE targets".Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications.204:272–277.Bibcode:2003NIMPB.204..272P.doi:10.1016/S0168-583X(02)01924-9.ISSN0168-583X.S2CID97103894.
  5. ^"ISOLDE isotope separator on-line project".CERN Courier.7(2): 22–27. February 1967.Retrieved26 August2019.
  6. ^"ISOLDE".CERN.2023-07-21.Retrieved2023-08-15.
  7. ^Kowalska, Magdalena (2006).Ground state properties of neutron-rich Mg isotopes(Thesis). Johannes Gutenberg-Universität Mainz.doi:10.25358/openscience-4152.
  8. ^"Beta NMR".Becola.Retrieved14 Aug2023.
  9. ^Gins, W.; Harding, R. D.; Baranowski, M.; Bissell, M. L.; Garcia Ruiz, R. F.; Kowalska, M.; Neyens, G.; Pallada, S.; Severijns, N.; Velten, Ph.; Wienholtz, F.; Xu, Z. Y.; Yang, X. F.; Zakoucky, D. (2019-05-01)."A new beamline for laser spin-polarization at ISOLDE".Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.925:24–32.arXiv:1809.04385.Bibcode:2019NIMPA.925...24G.doi:10.1016/j.nima.2019.01.082.ISSN0168-9002.S2CID119083745.
  10. ^Gins, Wouter (Jan 2019)."Development of a dedicated laser-polarization beamline for ISOLDE-CERN"(PDF).Ku Leuven.
  11. ^Kowalska, Magdalena (31 May 2017)."Interaction of Na ions with DNA G-quadruplex structures studied directly with Na beta-NMR spectroscopy".ISOLDE and Neutron Time-of-Flight Experiments Committee.
  12. ^Karg, Beatrice; Kowalska, Magdalena (4 Jan 2022)."Liquid β-NMR studies of the interaction of Na and K cations with DNA G-quadruplex structures".ISOLDE and Neutron Time-of-Flight Experiments Committee.
  13. ^Madurga, Miguel; Piersa-Silkowska, Monika (11 Jan 2023)."β-decay spectroscopy with laser-polarised beams of neutron-rich potassium isotopes".ISOLDE and Neutron Time-of-Flight Experiments Committee.