Saltu al enhavo

Gravito

El Vikipedio, la libera enciklopedio

Lagravitoestasfundamenta forto,kiu efikas intermasoj. Ĝi kaŭzas, ke ĉiuj mashavaj objektoj altiras, t. e. tendencas alproksimigi, sin reciproke.

La rezultanta forto dependas je la distanco(j) kaj je la masoj.

Gravito ankaŭ tenasTeronsur ĝia vojo ĉirkaŭSunon.

Historio de la fiziko de gravito

[redakti|redakti fonton]

Antikvaj filozofoj kaj esploristoj

[redakti|redakti fonton]

Aristotelokonstatis, ke ĉiuj pezaj objektoj emas fali teren, kaj tial supozis, ke la Tero posedas specialan forton, kiu altiras ĉiujn objektojn. Li deklaris, ke pezaj objektoj falas pli rapide ol malpezaj.

En la9-a jarcentola persa astronomoAl-Ĥorezmiformulis teorion, kiu klarigis la moviĝon de la planedoj per altira forto efikanta inter ili. Alia persa astronomo,Al-Ĥazini,en la 12-a jarcento supozis, ke la surtera pezoforto dependas de la distanco disde la tercentro.

Komencoj de naturscienco

[redakti|redakti fonton]

En la 16-a jarcentoGalilejoeksperimente konfirmis, ke la gravita falo estas moviĝo kun konstantaakcelo,kaj ke tiu akcelo ne dependas de la pezo de la falanta objekto (nur la bremsa efiko de aerafroto). Sed ĉar per tio li kontraŭdiris al Aristotelo, liaj kolegoj ne emis kredi lin.

Ĉirkaŭ 1670 la angloRobert Hookekomparis la efikon de gravito alfuneloj,en kiuj objektoj emas iri al la centro; per tio li jam proksimiĝis al postaj ideoj de Ejnŝtejno (vidu malsupre). Li supozis, ke gravito estas eco ne nur de Tero, sed de ĉiuj masaj objektoj. En letero al Neŭtonoli esprimis la teorion, ke la gravita forto inter du masoj estas inverse proporcia al la kvadrato de ilia distanco.

La formulo de Neŭtono

[redakti|redakti fonton]
Pli detalaj informoj troveblas en artikoloNeŭtona leĝo pri universala gravito.

Neŭtonoen sia verkoPrincipia Mathematica(1687) unue priskribis la leĝon de tiufenomenomatematike. Laŭ li, lafortointer du mashavantaj objektoj estas

kiem1kajm2estas la masoj de la objektoj,rla distanco inter la du objektoj (aŭ iliajmasocentroj) kajGlagravita konstanto,G ≈ 6,67384 · 10−11 N·m2·kg−2laŭ mezurado[1].Malgraŭ, ke iuj konsiderasGkiel la kvara universala konstanto, ĝi estas la plej malprecize konatafizika konstanto.

Tio estis la unuafizikateorio, kiu aplikeblas en laastronomio, el kiu sekvis laleĝoj de Keplero,kiu permesis prognozojn pri la reveno dekometoj,kaj faris la dinamikon de lasunsistemokomprenebla.

En1798Henry Cavendishsukcesis eksperimente mezuri la denson de Tero, el kiu eblas kalkuli la gravitan konstantonG.Ne estas certe, ĉu tiun kalkulon li faris.

La ĝenerala teorio de relativeco

[redakti|redakti fonton]
Deformo despacotempopro maso

La gravitoteorio de Neŭtono estas limkazo (por malgrandaj rapidecoj kaj relative malgrandaj masoj) de laĝenerala teorio pri relativecodeAlbert Einstein(Ejnŝtejno)[2]. La lasta speciale gravas por la priskribo de lakosmo,ĉar por grandaj distancoj la gravito estas la dominanta forto.

La teorio pri relativeco konsideras graviton ne kiel forton, sed kiel econ de la spaco; laŭ ĝi masoj kurbigas la spacon ĉirkaŭ si tiel, ke aliaj masoj moviĝas ne laŭ rektaj vojoj, sed sekvas la kurbecon de la spaco. Dudimensia analogaĵo de tiu kurbiĝo estas streĉita elasta tuko, sur kiun oni metas pezan globon; ĝi tiam kurbigas la tukon, kaj aliaj globoj emus ruliĝi al la unua globo.

La diferenco inter la du teorioj, la neŭtona kaj la ejnŝtejna, estas sur Tero neglektebla. La ejnŝtejna teorio tamen estas la nura, kiu klarigas fenomenon malkovritan de astronomoj en la 19-a jarcento: la longa akso de la orbito deMerkurone havas konstantan direkton, sed turniĝas; do ĝia punkto plej proksima al laSuno,laperihelio,moviĝas ĉirkaŭ la Suno. Tiun fenomenon ne klarigas la neŭtona teorio; astronomoj tial unue kredis, ke ĝin kaŭzas nekonataplanedo,nomataVulkano.

Limoj de la nunaj teorioj

[redakti|redakti fonton]

La ejnŝtejna teorio de relativeco estas, kvankam malsama al niaj ĉiutagaj spertoj, tutedetermina;ĝi permesas kalkuli el datenoj por iu tempo datenojn por alia (antaŭa aŭ posta) tempo. El lakvantuma fizikooni tamen scias, ke almenaŭ en tre malgranda skalo la mondo ne estas determinisma; do la teorio de ĝenerala relativeco ne povas esti ĝusta je malgrandega skalo. Inverse la kvantuma fiziko ne konsideras la relativecon de rapidoj; do ĝi ne povas esti ĝusta je grandegaj rapidoj. Fizikistoj esperas trovi kvantum-gravitan teorion, kiu kunigas la du aspektojn.

Se la gravito estas priskribebla per iukvantuma kampa teorio(kvantuma gravito), lagravitono(partiklo,kiu ĝis nun nur estas hipotezo) devas ekzisti. Tiam la gravitono rolas simile kiel lafotonoen laelektromagneta interefiko.

Efiko de gravito

[redakti|redakti fonton]

Baza fiziko

[redakti|redakti fonton]

La gravito estas senkontakta interefiko, ekzemple la altiro inter Suno kaj Tero efikas tra lavakuo.Tiel ĝi similas al laelektromagneta interefiko,kiun (ĉar pli forta) oni jam povas rimarki en malgrandaĵoj (ekzemplemagneto, elektra motoro,atomoj,molekuloj).

La gravito estas la plej malforta el la kvarfundamentaj fortoj,tamen por grandaj distancoj ĝi estas la sola efika forto, ĉar

  • ĝi efikas, kvankam malpli kaj malpli forte, je ajna distanco (la forta kaj la malforta interagoj havas limigitan atingon);
  • ĝi estas ŝirmata per nenio (elektra forto estas ŝirmebla per konduktanta materialo);
  • la efikoj de la masoj nur adiciiĝas (ne ekzistas forpuŝa gravito, kiel ĉeelektra ŝargo).

Laŭ Neŭtono la gravito estasmalproksima forto.Tio signifas, ke ŝanĝo en la fonto tuj efikas en la tutaspaco.Male, ŝanĝo enelektromagneta kampo disvastiĝas nur kunrapideco de lumo– temas priproksima forto.

En laspeciala teorio de relativeco,tuja disvastiĝo problemas pro la relativeco de samtempeco.Tial Albert Einstein formulis sianĝeneralan teorion de relativeco,laŭ kiu la gravito kaŭzas kurbecon de laspacotempo,kiu disvastiĝas maksimume same rapide kiom la lumo.

Tajda forto

[redakti|redakti fonton]

Ĉar la forto de gravito dependas de la distanco, ĝi malsame efikas al diversaj partoj de objekto. El tio rezultas tajda forto, kiu ricevis sian nomon de la regulaj leviĝo kaj malleviĝo de la surfaco de laoceanoj.Tiun moviĝon kaŭzas la fakto, ke la al-luna flanko de la Tero spertas pli fortan gravitan altiron ol la alia; la Luno fortiras la siaflankajn oceanojn de la Tero kaj la Teron de la aliflankaj oceanoj.

En iom granda objekto tajda forto povas esti konsiderinda kaj eĉ kaŭzi ĝian disiĝon. Ekzemple lakometoShoemaker-Levy 9en 1994 tre proksimiĝis alJupiterokaj estis disŝirita de tajda forto. LamarsalunoFoboestas tiom proksima al Marso, ke ĝia propra gravito ne povus kunteni ĝin; ĝi kunteniĝas nur pro sia solida konsisto kaj diskrevus, se ĝi estus likva.

Gravito sur Tero

[redakti|redakti fonton]
Devio de la tera gravito disde ideala elipsoido

SurTerolaŭ sia difino, la gravito sur la tera surfaco estas:

kiemestas la maso de objekto,MTla maso de la Tero kajRTties averaĝa radiuso.

De tiu formulo, oni deduktas lateran gravitan akcelon:

kiu valoras ĉirkaŭ 9,81 m/s². Ĝi tamen ne estas ĉie egala, pro tri kialoj:

  • La Tero ne estas perfekta globo; ĝia radiuso estas ĉe la polusoj ĉ. 21 km malpli ol ĉe laekvatoro.La ekvatoro havas pli grandan distancon al la tercentro, do malpli fortan graviton. La diferenco estas proksimume 0,25 %; pliaj 0,25 % rezultas el la fakto, ke ĉe la ekvatoro lacentrifuga fortokompensas parton de la gravito.
  • Ankaŭ je loka skalo la altoj de surteraj punktoj ne estas egalaj. Sur altaj montoj la gravito estas malpli forta ol sur marnivelo. Je alto de 10 km la gravito estas je 0,3 % malpli forta.
  • La Tero havas ne ĉie la samandensecon.Rezulte en kelkaj lokoj la gravito povas esti je ĝis 0,5 % pli aŭ malpli forta ol en aliaj same altaj lokoj.

Lokaj masoj, ekzemple montoj, ordinare ne havas grandan influon al la gravita forto, sed povas influi ties direkton, kiu do ne ĉiam estas tiu al la tera centro. Grandaj montaroj, kiajHimalajoaŭ la sudamerikajkordileroj,ja kaŭzas pli grandan graviton.

Astronomio: Gravita lensado

[redakti|redakti fonton]
Duloka stelo (Albireo) en laCignopro gravita lensado

La gravito de fora kosma objekto kutime estas tro malforta por rekta mezurado. Ĝi tamen kurbigas la spacon kaj tiel influas la lumon, kiu venas de steloj malantaŭ la objekto. Tiel eĉ povas esti, ke unu stelo aperas en du (proksimaj) lokoj sur la ĉielo. Se temas privarianta stelo,povas esti, ke ĝi aperas en malsamaj statoj, ĉar la vojoj de la lumo estas malsame longaj.

Per gravita lensado eblas konkludi pri la pozicio de la lensanta objekto, kvankam ĝi estas malluma kaj ne rekte observebla.

Kvankam astronomoj jam antaŭe konsciis pri la eblo de gravita lensado (Ejnŝtejno priskribis ĝin en 1936), la unua efiko de tia lensado estis trovita nur en 1979, la "ĝemelaj kvazaroj", kiuj fakte estas nur unu kvazaro.

Gravita kampo

[redakti|redakti fonton]

Gravita kampoestasfizika grando,aŭ skalara aŭ vektora, kiu estas funkcio de gravito laŭ loko kaj tempo.

En Esperanto

[redakti|redakti fonton]

Carlos SpínolaenVeturado tra la interplaneda spaco[3]prezentas la sciencon, sur kiu baziĝas lamovoen laspacofor de latera surfaco.La amaskomunikiloj sufiĉe ofte parolas nun pri sendo de navigiloj al aliaj planedoj, satelitoj kaj apartaj lokoj en la sunsistemo por astronomiaj observado kaj esplorado, eĉ pri homaj vojaĝoj al Luno, Marso ktp. Sed la kutima sperto veturi sur Tero, eĉ aviadile, ne same funkcias en la spaco. Eblas profiti de la energio de la astroj mem. Por tion kompreni, necesas klarigi la signifon de la neŭtonaj leĝoj de la movo kaj de launiversala gravito,kiuj gvidas la trajektoriojn de la falantaj kaj lanĉitaj objektoj sur la tera surfaco aŭ de la astroj en la sunsistemo. Per la neŭtonaj leĝoj eblas facile kalkuli la eskap-rapidon bezonatan por eliri de la tera surfaco aŭ de iu alia konata astro. La diversaj eblajorbitojen nia tera puto kaj iliaj trajtoj estos klarigitaj. Alia grava punkto estas kompreni kiel moviĝi energiŝpare inter orbitoj. Unue oni klarigas la ideon de la Hohmann-orbitoj. La kosmoŝipa motoro tute ne bezonas esti ĉiam funkcianta, sed nur en certaj mallongaj momentoj por ŝanĝi de unu orbito al alia. Nepras klarigo pri kiel atingi kinetan energion de la astroj mem per la metodo de gravita helpo (slingshot effect), kiu estas uzata por akceli aŭ bremsi la kosmoŝipojn. Por ekzemploj estas la interplanedaj vojaĝoj de la misio Rosetta de ESA kaj de la misio Cassini-Huygens de NASA-ESA. Tiu lasta celis al kaj esploris la saturnan satelitan sistemon dum preskaŭ 20 jaroj danke al la gravita helpo de Venuso, Tero, Jupitero kaj multfoje de la satelito Titano.

Vidu ankaŭ

[redakti|redakti fonton]
  1. CODATA Recommended Values(angle). National Institute of Standards and Technology. Alirita 2012-01-11.
  2. Albert Einstein. “Die Grundlagen der Allgemeinen Relativitätstheorie”,Annalen der Physik(la germana)49(4). Alirita 2013-01-13..
  3. Carlos Spínola,Veturado tra la interplaneda spaco.EnIKU-libro de 2020,pp. 77-92.

Eksteraj ligiloj

[redakti|redakti fonton]