Dynamique des fluides
Ladynamique des fluides(hydrodynamiqueouaérodynamique) est l'étude desmouvementsdesfluides,qu'ils soientliquidesougazeux.Elle fait partie de lamécanique des fluidesavec l'hydrostatique(statique des fluides).
La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme lavitesse,laviscosité,ladensité,lapressionet latempératureen tant que fonctions de l'espace et du temps.
Perspectives actuelles
modifierOn ne connaît pas parfaitement les équations qui gouvernent les fluides: leséquations de Navier-Stokeset ses dérivées ne sont pas valables pour tous les fluides. Le miel, le sang ou encore du cristal liquide n'obéissent plus aux équations de Navier-Stokes en raison des coefficients de viscosité supplémentaires. À l'heure actuelle, le problème reste ouvert. Ces équations non linéaires qui ne sont pas simples et encore non complètement définies mathématiquement (analyse, météorologie) peuvent générer des comportements extrêmement complexes, comme laturbulence.On peut aborder ces phénomènes, chaotiques ou non chaotiques, d'un point de vue de physique statistique de non-équilibre, à partir de méthodes théoriques (fonctions de corrélation à n particules, fonctions de corrélation temporelles, convolution et filtrage), mais il reste difficile de prévoir les comportements fins de la turbulence à partir des équations. Or la majorité des écoulements qui nous entourent (eau, air, huile, etc.) sontnon newtonienset turbulents — c'est dire à quel point l'importance de ce problème est grande.
Il est également intéressant d'étudier la transition entre un comportement simple des fluides (écoulement laminaire) et un comportement avec tourbillons (écoulementturbulent).
Étude des phénomènes
modifierL'étude de ces phénomènes est aujourd'hui bien souvent numérique: on simule des solutions des équations, qui ressemblent effectivement à des écoulements réels - sauf que c'est comme si on disposait d'un système de mesure parfait, qui pourrait tout mesurer sans rien perturber.
Une autre voie de recherche très utilisée est l'étude ensoufflerie.En mettant un modèle réduit à étudier dans un fort flux d'air, et en étudiant l'écoulement par divers moyens (mesure de la vitesse d'écoulement paranémomètreoutube de Pitot,mesure des efforts par des dynamomètres, visualisation des lignes de courant), on peut améliorer la connaissance des efforts aérodynamiques sur l'objet.
Parallèlement, les études d'hydrodynamique sur les navires, les installations pétrolières en mer ou les ouvrages portuaires utilisent souvent des bassins dans lesquels on peut représenter desvaguesréalistes. Comme en soufflerie, les essais s'effectuent généralement sur des modèles réduits.
Cela pose donc, dans les deux cas, des problèmes de similitude qui nécessitent d'abord une analyse critique des phénomènes pour mettre en évidence les paramètres pertinents et ceux que l'on peut négliger, ensuite leur prise en compte à l'aide denombres sans dimension.
Il existe également d'autres méthodes expérimentales pour étudier des écoulements:strioscopie,vélocimétrie laser…
Applications de la dynamique des fluides
modifierLa dynamique des fluides et ses sous-disciplines comme l'aérodynamique,l'hydrodynamique, et l'hydrauliqueont des applications très diverses. Par exemple, elles sont utilisées dans le calcul desforceset desmomentsdans l'aéronautiqueou pour les prévisionsmétéorologiques.
Le concept de fluide est étonnamment général. Par exemple, certains des concepts mathématiques de base concernant lagestion du traficsont dérivés en considérant le trafic comme un fluide continu.
L'hypothèse de la continuité
modifierLes gaz sont composés demoléculesqui se heurtent entre elles comme des objets pleins.
L'hypothèse de continuité, cependant, considère les fluides comme étantcontinus.C'est-à-dire que l'on admet que des propriétés telles que ladensité,lapression,latempérature,et lavitessesont prises pour étant bien définies à des points infiniment petits, et changent progressivement d'un point à l'autre. La nature discrète et moléculaire d'un fluide est donc ignorée.
Ces problèmes pour lesquels l'hypothèse de continuité ne donne pas des réponses avec l'exactitude désirée sont résolus grâce à lamécanique statistique.Afin de déterminer s'il faut employer la dynamique liquide conventionnelle (une sous-discipline de lamécanique des milieux continus) ou de la mécanique statistique, lenombre de Knudsenest évalué pour résoudre le problème. Les problèmes pour lesquels le nombre de Knudsen est égal ou supérieur à 1 doivent être traités par la mécanique statistique pour donner des réponses fiables.
Équations de la dynamique des fluides
modifierLes axiomes fondamentaux de la dynamique des fluides sont leslois de conservationscomme laconservation de la masse(aussi appeléeéquation de continuité), laconservation de la quantité de mouvement(plus connue sous le nom deseconde loi de Newton), et laconservation de l'énergie.Ils constituent la base de lamécanique newtonienneet sont aussi importants enmécanique relativiste.
Les équations les plus importantes sont leséquations de Navier-Stokes,qui sont deséquations différentiellesnon linéairesdécrivant le mouvement des fluides.
Ces équations, lorsqu'elles ne sont pas simplifiées n'ont pas de solutions analytiques et ne sont donc utiles que pour dessimulations numériques.
Ces équations peuvent être simplifiées de diverses manières ce qui rend ces équations plus faciles à résoudre.
Certaines simplifications permettent de trouver des solutions analytiques à des problèmes de dynamique des fluides. De plus, les résultats récents de chercheurs tentant de résoudre lesProblèmes du prix du millénairelaissent penser que les équations de Navier-Stokes seraient mal posées.
Choix d'une description du fluide
modifierPour décrire mathématiquement lacinématiqued'un fluide, c'est-à-dire le mouvement des particules, indépendamment des propriétés du fluide, on fait appel à lagéométrie analytique.Deux systèmes cohabitent, l'un et l'autre présentant des avantages dans des situations particulières. Il s'agit de:
Tandis que la première consiste à décrire lestrajectoiressuivies par les particules au cours du temps, la seconde décrit lechampde vitesses à un instant donné.
Comme dans d'autres domaines, la cinématique sert de base à ladynamique,calcul des mouvements en fonction des forces appliquées. Les deux descriptions sont alors liées mathématiquement par la relation des dérivées
où le terme,dérivée totale appelée « dérivée particulaire », « dérivée totale » ou encore « dérivée lagrangienne », représente la dérivée dans la description lagrangienne (ie.« ressentie » par une particule en mouvement), et le termede dérivée partielle ou « eulérienne » représente la dérivée dans la description eulérienne (ie.« vue » par un observateur en un point fixe).
Fluide compressible et incompressible
modifierUn fluide est appelécompressiblesi les changements de la densité du fluide ont des effets significatifs sur l'ensemble de la solution. Dans le cas contraire, il s'agit d'unfluide incompressibleet les changements de densité sont ignorés.
Afin de savoir si le fluide est compressible ou incompressible, on calcule lenombre de Mach.Approximativement, les effets de la compression peuvent être ignorés pour les nombres de Mach en dessous de 0,3. Presque tous les problèmes impliquant desliquidesse trouvent dans cette catégorie, à commencer par l'eau,et sont définis comme incompressibles.
Les équations de Navier-Stokes incompressible sont des simplifications des équations de Navier-Stokes dans lesquelles la densité est considérée comme constante. Elles peuvent être utilisées pour résoudre les problèmes impliquant des fluides incompressibles de manière prépondérante, ce qui peut être assez restrictif.
Par exemple, enacoustique,lavitesse du sondans l'air étant finie, le fluide «air» doit être traité comme compressible. En effet, supposons que l'air soit un fluide incompressible: il se déplacerait alors en bloc et propagerait toute modification de pression locale à une vitesse infinie. La vitesse du sondans un fluide compressible s'écrit d'ailleurs comme fonction de sa compressibilité:
La viscosité
modifierLes problèmes dus à laviscositésont ceux dans lesquels les frottements du fluide ont des effets significatifs sur la solution. Dans le cas contraire où les frottements peuvent être négligés, le fluide est appelénon visqueuxouparfait.
Lenombre de Reynoldspeut être employé pour estimer quel type d'équation est approprié pour résoudre un problème donné. Un nombre de Reynolds élevé indique que les forces d'inertiesont plus importantes que les forces de frottement. Cependant, même lorsque le nombre de Reynolds est très élevé, certains problèmes nécessitent de prendre en compte les effets de la viscosité, du fait que celle-ci joue un rôle important dans lesdécollements de l'écoulement[1].
En particulier, dans les problèmes où l'on calcule les forces exercées sur un corps (comme lesailesd'un avion), il convient de prendre en compte la viscosité.
Comme illustré par leParadoxe de D’Alembert,un corps immergé dans un fluide non visqueux n'est soumis à aucune force.
Les équations normalement utilisées pour l'écoulement d'un fluide non visqueux sont leséquations d'Euler.
Dans la dynamique des fluides numérique, on emploie leséquations d'Eulerlorsqu'on est loin du corps et les équations tenant compte de lacouche limitelorsqu'on est à proximité du corps.
Leséquations d'Eulerpeuvent êtreintégréesle long d'uneligne de courantpour aboutir à la fameuseéquation de Bernoulli.
Quand l'écoulement est partout irrotationnel et non visqueux, l'équation de Bernoulli peut être employée pour résoudre le problème.
Écoulement stationnaire et instationnaire
modifierUne autre simplification des équations de la dynamique des fluides est de considérer toutes les propriétés du fluide (vitesse, pression, etc.) comme étant constantes dans le temps. Cette situation (où, typiquement, la vitesse relative du corps par rapport au fluide est constante) est celle d'un écoulementstationnaire(oupermanent) et constitue une bonne approximation pour l'étude de nombreux problèmes, tels que la portance et la traînée d'une aile ou le ralentissement d'un fluide s'écoulant dans un tuyau.
Dans le cas particulier d'un écoulement stationnaire, les équations de Navier-Stokes et d'Euler se simplifient donc.
Dans le cas particulier où l'écoulement d'un fluide est à la fois incompressible, non visqueux et stationnaire, il peut être résolu avec les lois de l'écoulement potentieldécoulant de l'équation de Laplace.Les problèmes de cette classe ont alors des solutions qui sont des combinaisons d'écoulements linéaires élémentaires (image de droite).
Au contraire, lorsqu'un corps est accéléré dans un fluide (donc que sa vitesse relative à ce fluide n'est pas constante) on dit que l'écoulement estinstationnaire.On est alors conduit à prendre en compte lamasse ajoutéedu fluide. Un exemple d'écoulement instationnaire est l'écoulement de l'air autour d'un pendule: la vitesse de la masse du pendule évolue continuellement depuis zéro jusqu'à sa vitesse maximale avec retour à zéro, puis même chose dans le sens contraire et ainsi de suite; on est alors typiquement dans le cas d'un écoulement instationnaire. D'autres exemples sont les écoulements autour desailes battantesd'insectes ou d'oiseaux.
Écoulement laminaire et turbulence
modifierLaturbulenceest un écoulement dominé par des remous, et un aspect aléatoire apparent. Lorsqu'il n'y a pas de turbulences on dit que l'écoulement estlaminaire.
La turbulence des fluides obéit à l'équation de Navier-Stokes. Cependant, les problèmes d'écoulement sont si complexes qu'il n'est pas possible actuellement de les résoudre numériquement en partant des principes de base.
La turbulence est plutôt modélisée à l'aide d'un des nombreuxmodèles de turbulenceet couplée avec un résolveur de flux qui suppose que le flux est laminaire en dehors de la région de turbulence.
L'étude duNombre de Reynoldspermet de déterminer le caractère turbulent ou laminaire d'un écoulement.
Dans un circuit ousystème hydrauliquel'écoulement doit toujours si possible êtrelaminaire.Au-delà de ce régime laminaire, il passe en phase dite critique et ensuite en régimeturbulent,ce qui transforme l'énergie mécanique en température plutôt qu'en énergie hydraulique, le rendement chutant alors considérablement.
Autres approximations
modifierIl y a un grand nombre d'autres approximations possibles face aux problèmes de la dynamique des fluides.
Par exemple, l'écoulement de Stokesest l'écoulement d'un fluide dont lenombre de Reynoldsest très bas, de sorte que les forces d'inertie peuvent être négligées face aux forces de frottement (image ci-contre).
L'approximation deBoussinesqnéglige les forces de compression excepté pour calculer les forces deflottabilité.
Articles connexes
modifierChamps d'étude
modifier- Acoustique(utilise les dérivés de la dynamique des fluides)
- Aérodynamique
- Aéronautique
- Élasticité
- Étude de la dynamique des fluides par ordinateur
- Fluide rhéoscopique
- Géosciences
- Hémodynamique
- Hydraulique
- Hydrodynamique navale
- Mesure des flux
- Rhéologie
Équations mathématiques
modifierType d'écoulement des fluides
modifierPropriétés des fluides
modifierNombres sans dimension décrivant un écoulement
modifierSources
modifier- George Batchelor(1967)An Introduction to Fluid Dynamics,Cambridge University Press(ISBN0521663962)
- Étienne Guyon,J-P. Hulin, L. Petit (1991)Hydrodynamique physique,Savoirs Actuels(ISBN2868835023)
- Lev LandauetEvguéni Lifchitz(1998)Mécanique des fluides,Ellipses,(ISBN2729894233)
Bibliographie
modifier- E. Guyon, J. P. Hulin, L. Petit (2001),Hydrodynamique physique nouvelle édition revue et augmentée,Collection savoirs actuels,EDP scienceset CNRS éd., Paris, p. 674
Liens externes
modifier- Notices dans des dictionnaires ou encyclopédies généralistes:
Notes et références
modifier- Il y a décollement de l'écoulement sur un corps lorsque leslignes de courantcontournant ce corps ne suivent plus la paroi de ce corps.