Aller au contenu

Période 8 du tableau périodique

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuisUnquadseptium)

Lapériode 8 du tableau périodiqueest la huitième ligne, oupériode,des versionsétenduesdutableau périodique des éléments.Elle contient deséléments chimiqueshypothétiques: en,aucun de ces éléments n'avait été observé, bien que diverses tentatives pour les synthétiser aient eu lieu depuis le début duXXIesiècle. Ces éléments sont désignés selon ladénomination systématiquede l'IUPAC:les deux premiers d'entre eux, par exemple, s'appellent ainsi respectivementununenniumetunbinilium,ce qui correspond aux chiffres 1-1-9 et 1-2-0 de leurnuméro atomiquerespectif; dans la littérature, la dénomination systématique n'est jamais employée, et un élément de numéro atomiqueZest simplement désigné par « élémentZ» — l'ununennium et l'unbinilium sont ainsi toujours appelés « élément 119 » et « élément 120 ».

L'étude des éléments de la période 8 relève davantage de laphysique nucléaire,voire de laphysique des particules,que de lachimie,car il s'agit dans un premier temps de parvenir à les synthétiser et à les détecter. Si on parvenait à en produire des quantités suffisantes pour pouvoir en étudier la chimie, ces éléments présenteraient certainement des comportements différents de ceux des périodes précédentes en raison d'uneconfiguration électroniquealtérée par des effetsquantiquesetrelativistesdevenant sensibles à ces niveaux d'énergie, tels que l'électrodynamique quantique,ou encore lecouplage spin-orbite,qui divise les sous-couches périphériques en recomposant la répartition des niveaux d'énergie pour former de nouvelles sous-couches apparentes sans rapport avec la périodicité observée pour les éléments denuméro atomiqueinférieur.

Liste des éléments de la période 8

[modifier|modifier le code]

Contrairement à ce qu'il en est pour lespériodesprécédentes, on ignore combien d'élémentsoccupent la8epériode dutableau périodique des éléments.S'il est clair que le bloc s ne compte que deux éléments sur cette période comme sur les précédentes, la8epériode est en revanche la première à comporter des éléments dubloc g,et leur nombre varie de 18, pour une extrapolation simple de larègle de Klechkowski,à 22, par laméthode de Hartree-Fock.

Éléments du bloc s

[modifier|modifier le code]

Selon toute vraisemblance, lesélémentsdubloc sde la8epériode devraient pouvoir être observés dans la décennie 2020, la condition nécessaire étant de disposer d'une sensibilité de l'ordre de quelques dizaines defemtobarns,ce qui est hors de portée même des installations les plus pointues disponibles en 2016. Ces éléments seraient les suivants:

Sous-couche 8s 119Uue 120Ubn
Configurations électroniquescalculées
Élément chimique ParKlechkowski Par Fricke & Stoff[1]
119 Uue Ununennium [Og] 8s1 [Og] 8s1
12
120 Ubn Unbinilium [Og] 8s2 [Og] 8s2
12

On s'attend à ce que ces éléments présentent des propriétés chimiques proches durubidiumet dustrontiumsur lapériode 5car leurorbitale8s est contractée à la suite d'effetsrelativistes,ce qui les distingue de leurs voisins immédiatsfranciumetradiumsur lapériode 7.En raison de cette contraction, lerayon atomiquede ces éléments devrait être semblable à celui du francium et du radium. Ils devraient se comporter respectivement comme unmétal alcalinet unmétal alcalino-terreux,donnant respectivement unétat d'oxydation+1 et +2, mais la déstabilisation relativiste de lasous-couche électronique7p3/2et l'énergie d'ionisationrelativement faible desélectronsde cette sous-couche devraient rendre possibles des états d'oxydation supérieurs, respectivement +3 et +4 par exemple[2].

Éléments du bloc g

[modifier|modifier le code]

La8epériode est la première dutableau périodiqueà posséder desélémentsdubloc g.Ils appartiendraient à lafamilledessuperactinides,caractérisée par le remplissage progressif dessous-couches électroniques5g et 6f; ils pourraient ainsi avoir des propriétés chimiques rappelant celles desactinides(caractérisés par le remplissage de la sous-couche 5f), mais la proximité des niveaux d'énergie 5g et 6f, ainsi que leur faible écart avec les niveaux 7d et 8p, pourrait conduire à une relative confusion des sous-couches électroniques dans ces atomes, d'où peut-être des comportements chimiques originaux indépendants de leur position dans le tableau périodique[3].

Leur observabilité serait conditionnée à l'existence de l'hypothétiqueîlot de stabilité,prédit par lemodèle en couchesdunoyau atomiqueà travers lesnombres magiques(2, 8, 20, 28, 50, 82, 126 et 184) deprotonset deneutronsassurant une stabilité particulière auxnucléidesqui en sont composés. Si cet îlot de stabilité existe réellement, alors certains isotopes des éléments jusqu'à Z ≈ 127 pourraient avoir despériodes radioactivesde l'ordre de quelques secondes et pourraient donc être observables[4];il est en revanche vraisemblable qu'on ne puisse jamais observer de nucléides pour lesquels Z> 130[3].La position de l'îlot de stabilité elle-même demeure incertaine car la détermination des nombres magiques dans les atomes superlourds pourrait obéir à des règles différentes de celles théorisées (et relativement bien vérifiées) pour les atomes plus légers[5],de sorte que, même si cet îlot existait, il pourrait être en réalité situé plus « bas » en termes de numéro atomique, rendant du même coup inobservables tous les superactinides.

Enfin, le nombre même des éléments dubloc gde la8epériode n'est pas non plus connu avec certitude. Une extrapolation simple de larègle de Klechkowski,dans l'esprit du concept dessuperactinidesdeGlenn Seaborg,conduit à placer les éléments 121 à 138 dans le bloc g, suivis des éléments 139 à 152 dans le bloc f; en revanche, laméthode de Hartree-Fockconduit à disposer les éléments 121 à 142 dans le bloc g, suivis des éléments 143 à 156 dans le bloc f, des éléments 157 à 166 dans le bloc d, etc.

Sous-couche 5g 121Ubu 122Ubb 123Ubt 124Ubq 125Ubp 126Ubh 127Ubs 128Ubo 129Ube 130Utn 131Utu 132Utb 133Utt 134Utq 135Utp 136Uth 137Uts 138Uto 139Ute 140Uqn 141Uqu 142Uqb
Configurations électroniquescalculées des éléments du bloc g
Élément chimique ParKlechkowski Par Fricke & Stoff[1] Par Umemoto et Saito[6]
121 Ubu Unbiunium [Og] 8s25g1 [Og] 8s2
12
8p1
12
[Og] 8s28p1
122 Ubb Unbibium [Og] 8s25g2 [Og] 8s2
12
7d1
32
8p1
12
[Og] 8s28p2
123 Ubt Unbitrium [Og] 8s25g3 [Og] 8s2
12
6f1
52
7d1
32
8p1
12
[Og] 8s26f17d18p1
124 Ubq Unbiquadium [Og] 8s25g4 [Og] 8s2
12
6f3
52
8p1
12
[Og] 8s26f28p2
125 Ubp Unbipentium [Og] 8s25g5 [Og] 8s2
12
5g1
72
6f3
52
8p1
12
[Og] 8s26f48p1
126 Ubh Unbihexium [Og] 8s25g6 [Og] 8s2
12
5g2
72
6f2
52
7d18p1
12
[Og] 8s25g16f48p1
127 Ubs Unbiseptium [Og] 8s25g7 [Og] 8s2
12
5g3
72
6f2
52
8p2
12
[Og] 8s25g26f38p2
128 Ubo Unbioctium [Og] 8s25g8 [Og] 8s2
12
5g4
72
6f2
52
8p2
12
[Og] 8s25g36f38p2
129 Ube Unbiennium [Og] 8s25g9 [Og] 8s2
12
5g5
72
6f2
52
8p2
12
[Og] 8s25g46f38p2
130 Utn Untrinilium [Og] 8s25g10 [Og] 8s2
12
5g6
72
6f2
52
8p2
12
[Og] 8s25g56f38p2
131 Utu Untriunium [Og] 8s25g11 [Og] 8s2
12
5g7
72
6f2
52
8p2
12
[Og] 8s25g66f38p2
132 Utb Untribium [Og] 8s25g12 [Og] 8s2
12
5g8
72
6f2
52
8p2
12
n.d.
133 Utt Untritrium [Og] 8s25g13 [Og] 8s2
12
5g8
72
6f3
52
8p2
12
n.d.
134 Utq Untriquadium [Og] 8s25g14 [Og] 8s2
12
5g8
72
6f4
52
8p2
12
n.d.
135 Utp Untripentium [Og] 8s25g15 [Og] 8s2
12
5g8
72
5g1
92
6f4
52
8p2
12
n.d.
136 Uth Untrihexium [Og] 8s25g16 [Og] 8s2
12
5g8
72
5g2
92
6f4
52
8p2
12
n.d.
137 Uts Untriseptium [Og] 8s25g17 [Og] 8s2
12
5g8
72
5g3
92
6f3
52
7d1
32
8p2
12
n.d.
138 Uto Untrioctium [Og] 8s25g18 [Og] 8s2
12
5g8
72
5g4
92
6f3
52
7d1
32
8p2
12
n.d.
139 Ute Untriennium [Og] 8s25g186f1 [Og] 8s2
12
5g8
72
5g5
92
6f2
52
7d2
32
8p2
12
n.d.
140 Uqn Unquadnilium [Og] 8s25g186f2 [Og] 8s2
12
5g8
72
5g6
92
6f3
52
7d1
32
8p2
12
n.d.
141 Uqu Unquadunium [Og] 8s25g186f3 [Og] 8s2
12
5g8
72
5g7
92
6f2
52
7d2
32
8p2
12
n.d.
142 Uqb Unquadbium [Og] 8s25g186f4 [Og] 8s2
12
5g8
72
5g8
92
6f2
52
7d2
32
8p2
12
n.d.

Éléments des bloc f, d et p

[modifier|modifier le code]

Relevant vraisemblablement davantage de l'extrapolation mathématique qu'autre chose, les éléments du bloc f de la8epériode compléteraient la liste dessuperactinides.Situés sous lesactinidesdans letableau périodique,ces éléments, s'ils pouvaient être observés, présenteraient peut-être des propriétés chimiques semblables, bien que l'effet des électrons de la sous-couche 5g, située à un niveau d'énergie à peine inférieur à la sous-couche 6f, soit difficilement prévisible; les effetsquantiques et relativistesdans le cortège électronique des éléments du bloc f de la huitième période seraient probablement encore plus sensibles que ceux attendus pour les éléments dubloc g,puisque leurnuméro atomiqueest encore plus élevé.

Si les éléments des blocs d et p de la8epériode pouvaient être étudiés du point de vue chimique, il est vraisemblable que les effetsquantiques et relativistes au sein de leur cortège électroniqueseraient tels qu'ils échapperaient à toute classification existante, à l'image de l'oganessonqui, bien qu'il appartienne, sur la7epériode, à la colonne desgaz rares,n'en semble pas moins chimiquement déjà assez éloigné.

Notes et références

[modifier|modifier le code]
  1. aetb (en)Burkhard Fricke et Gerhard SoffDirac-Fock-Slater calculations for the elements Z = 100, fermium, to Z = 173»,Atomic Data and Nuclear Data Tables,vol.19,no1,‎,p.83-95(DOI10.1016/0092-640X(77)90010-9,Bibcode1977ADNDT..19...83F,lire en ligne)
  2. (en)B. Fricke, W. Greiner et J. T. WaberThe continuation of the periodic table up to Z = 172. The chemistry of superheavy elements»,Theoretica chimica acta,vol.21,no3,‎,p.235-260(DOI10.1007/BF01172015,lire en ligne)
  3. aetbEncyclopaedia Britannica:article «Transuranium Element», dont la section «Superactinoid Series» évoque l'impossibilité de prévoir les propriétés chimiques des superactinides en raison de la confusion des niveaux d'énergie des sous-couches 5g et 6f, ainsi que 7d et 8p; la brève section «End of Periodic Table» en fin d'article situe entre 170 et 210 le nombre limite de protons pouvant être contenus dans un même noyau.
  4. Les noyaux dits « doublement magiques » — avec un nombre magique de protons et un nombre magique de neutrons — sont à cet égard considérés comme les plus prometteurs, à commencer par le nucléide310126.
  5. (en)Robert V. F. Janssens, «Nuclear physics: Elusive magic numbers»,Nature,vol.435,no7044,‎,p.897-898(2)(PMID15959502,DOI10.1038/435897a,Bibcode2005Natur.435..897J,lire en ligne,consulté le)
  6. (en)Koichiro Umemoto et Susumu SaitoElectronic Configurations of Superheavy Elements»,Journal of the Physical Society of Japan,vol.65,no10,‎,p.3175-3179(DOI10.1143/JPSJ.65.3175,Bibcode1996JPSJ...65.3175U,lire en ligne)

Articles connexes

[modifier|modifier le code]


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 119 120 *
* 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142


Métaux alcalins Métaux alcalino-terreux Lanthanides Métaux de transition Métaux pauvres Métalloïdes Non-métaux Halogènes Gaz nobles Éléments non classés
Actinides
Superactinides